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This paper implements an evolutionary operations based global optimization algorithm for the minimum
cost design of a two span continuous prestressed concrete (PC) I-girder bridge structure. Continuity is
achieved by applying additional deck slab reinforcement in negative flexure zone. The minimum cost
design problem of the bridge is characterized by having a nonlinear constrained objective function,
and a combination of continuous, discrete and integer design variables. A global optimization algorithm
called EVolutionary OPeration (EVOP), is used which can efficiently solve the presented constrained min-
imization problem. Minimum cost design is achieved by determining the optimum values of 13 numbers
of design variables. All the design constraints for optimization belong to AASHTO Standard Specifications.
The paper concludes that the robust search capability of EVOP algorithm has efficiently solved the pre-
sented structural optimization problem with relatively small number of objective function evaluation.
Minimum design achieved by application of this optimization approach to a practical design example
leads to around 36% savings in cost.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Most important criteria in structural design are serviceability,
safety and economy. Structural engineers usually try to determine
the optimum design that satisfies all performance requirements as
well as minimize the cost of the structure. Advances in numerical
optimization methods, computer based numerical tools for analy-
sis and design of structures and availability of powerful computing
hardware have all significantly aided the design process to ascer-
tain the optimum design.

Many numerical optimization methods have been developed
during last decades for solving linear and nonlinear optimization
problems. Some of these methods are gradient based and search
for a local optimum by moving in a direction related to the local
gradient. Other methods apply first and second order necessary
conditions to seek a local minimum by solving a set of nonlinear
equations. For optimization of large engineering structures, these
methods become inefficient due to large amount of associated gra-
dient calculations and finite element analyses. Furthermore, when
the objective function and constraints contain multiple or sharp
peaks, the gradient based search becomes difficult and unstable.
This difficulty has led to research on various new and innovative
techniques which are found to be efficient and robust in solving
complex and large structural optimization problems [1–11]. A
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constrained optimization algorithm EVolutionary OPeration (EVOP)
[12], one of these new tools has been successfully applied for locat-
ing the global minimum [12–14]. It has been tested on a 10-variable
objective function containing thousands of local minima [14] and
has succeeded in locating the global minimum on completion of
just the first pass. For 6-digit convergence accuracy it required only
around 3000 objective function evaluations. Further, EVOP is capa-
ble of handling design vector containing mixed integer, discrete and
continuous variables.

Optimization of bridge structures has not been attempted
extensively as there are some complexities in formulating the
optimization problem. These are presence of large number of
design variables, discrete values of variables, discontinuous con-
straints and difficulties in formulation [15]. Adeli and Sarma [15]
and Hassanain and Loov [16] have presented review of articles
pertaining to cost minimization of prestressed concrete bridge
structures. Some researchers [17–21] have used linear program-
ming methods for minimum cost PC bridge design. Others [22–25]
have used nonlinear programming techniques instead. Kirsch [26]
used two level optimization of PC beam by using both linear and
nonlinear programming technique. Genetic Algorithm has also been
used by Ayvaz and Aydin [27] to minimize the cost of pre-tensioned
PC I-girder bridges. Ahsan et al. [28] has recently demonstrated
successful use of EVOP in cost optimum design of simply supported
post-tensioned bridge.

The focus of this research is also on the evaluation of the effec-
tiveness of the global optimization algorithm – EVOP developed by
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Fig. 2. A ‘‘complex’’ with four vertices [12].
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Ghani [12] in handling optimization problems of engineering
structures particularly bridge structures. The bridge considered is
a two span continuous post-tensioned PC I-girder structure. It is
made continuous for superimposed dead loads and live loads by
using negative flexural reinforcement in the deck slab. Large num-
ber of design variables and constraints are considered for cost min-
imization of the bridge system. A computer program is developed
in C++ to formulate and execute the minimization problem.

2. Optimization algorithm – EVOP

In the present minimization problem, 13 numbers of design
variables and a large numbers of constraints are associated. The de-
sign variables are categorized as continuous, discrete and integer
types. The minimum cost design problem is subjected to highly
nonlinear, implicit and discontinuous constraints that have multi-
ple local minima requiring an optimization method that seeks the
global optimum (Fig. 1). A global optimization algorithm, EVOP is
used in this study. It has the capability to locate directly with high
probability the global minimum within the first few automatic re-
starts. It also has the ability to minimize directly an objective func-
tion without requiring information on gradient or sub-gradient.
There is no requirement for scaling of objective and constraining
functions. It has facility to check whether the previously obtained
minimum is the global minimum by user defined number of auto-
matic restarts.

The algorithm can minimize an objective function

FðxÞ ¼ Fðx1; x2 . . . xNÞ ð1Þ

where F(x) is a function of n independent variables x = (x1,x2, . . . , xN).
Explicit constraints (Eq. (2)) are imposed on each of the N inde-

pendent variables xi’s (i = 1,2, . . . , N).

ECLi 6 xi 6 ECUi ð2Þ

where ECLi’s and ECUi’s are lower and upper limits on the variables
respectively. They should be either constants or functions of N inde-
pendent variables (moving boundaries). The explicit constraints are,
however, not allowed to make the feasible vector-space non-
convex.

Some implicit constraints (Eq. (3)) are also imposed on these n
independent variables xi’s which are indirectly related to the de-
sign variables.

ICLj 6 fjðx1; x2 . . . xNÞ 6 ICUj ð3Þ

where j = 1,2, . . . , m. ICLj’s and ICUj’s are lower and upper limits on
the m implicit constraints respectively. They can be constants or
functions of the N independent design variables. The implicit con-
straints are allowed to make the feasible vector-space non-convex.
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Fig. 1. Global and local optima of a 2-D function.
The algorithm is composed of six basic processes that are fully
described in Ref. [12]. In this paper only a brief introduction to
the algorithm is provided together with some illustrations. In order
to understand the algorithm, at first it is necessary to know what a
‘‘complex’’ is. A ‘complex’ is an object that occupies an N-dimen-
sional parameter space inside a feasible region defined by
K P (N + 1) vertices inside a feasible region. where N is the number
of independent design variables. It can rapidly change its shape
and size for negotiating difficult terrain and has the intelligence
to move towards a minimum. Fig. 2 shows a ‘complex’ with four
vertices [12] in a two dimensional parameter space (X1 and X2

axes), where X1 and X2 are the two independent design variables.
The ‘complex’ vertices are identified by lower case letters ‘a’, ‘b’,
‘c’ and ‘d’ in an ascending order of function values, i.e.
F(a) < F(b) < F(c) < F(d). Each of the vertices has two co-ordinates
(X1, X2). Straight line parallel to the co-ordinate axes are explicit
constraints with fixed upper and lower limits. The curved lines
represent implicit constraints set to either upper or lower limits,
and the hatched area is the two dimensional feasible region. A
three dimensional representation of an objective function,
F = F(X1, X2) with two design variables (X1, X2) is shown in Fig. 3
which also represents a typical complex with four vertices ‘a’, ‘b’,
‘c’ and ‘d’ lying on the 2-dimensional parameter space (X1X2 plane).

The six basic processes of algorithm, EVOP are: (i) generation of
a ‘complex’, (ii) selection of a ‘complex’ vertex for penalization, (iii)
testing for collapse of a ‘complex’, (iv) dealing with a collapsed
‘complex’, (v) movement of a ‘complex’, and (vi) convergence tests
[12]. These six processes are illustrated in Fig. 4.
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Fig. 3. A ‘‘complex’’ with four vertices in X1X2 plane.



Fig. 4. Processes of EVOP algorithm.

Fig. 5. Generation of initial ‘‘complex’’ [12].
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Fig. 6. Selection of a complex vertex for penalization.
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2.1. Generation of a ‘complex’

A ‘complex’ is generated beginning with a user provided start-
ing point that satisfies all explicit and implicit constraint sets. Gen-
erating this feasible starting point is simple and described
elsewhere [28]. Referring to Fig. 5, for any feasible parameter space
a second point ‘b’ is randomly generated within the bounds defined
by the explicit constraints [12]. The coordinates of this random
point is given by:

xi,ECLi þ riðECUi � ECLiÞ where ði ¼ 1;2 . . . NÞ ð4Þ

where ri is a pseudo-random deviate of rectangular distribution
over the interval (0,1).

If this second point also happens to satisfy all implicit
constraints, then everything is going fine. The centroid of the two
feasible points is next determined. If it satisfies all constraints, then
things are really going fine and the ‘complex’ is updated with this
second point. If, however, the randomly generated point fails to
satisfy the implicit constraints it is continually moved half way
towards the feasible starting point till all constraints are satisfied.
Feasibility of the centroid of the two points is next checked. If the
centroid satisfies all constraints, then we have an acceptable ‘com-
plex’, and we proceed to generate the third feasible point for the
‘complex’. If, however, the centroid fails to satisfy any of the con-
straints this second point is once again randomly generated in
the space defined by the explicit constraints and the process re-
peated till a feasible centroid is obtained. Thus beginning from a
single feasible starting point, all remaining (k � 1) vertices of the
‘complex’ are generated that satisfy all explicit and all implicit
constraints.
2.2. Selection of a ‘complex’ vertex for penalization

In this step, the worst vertex is penalized. The worst vertex of a
‘complex’ is that with the highest function value which is penal-
ized by over-reflecting on the centroid (Fig. 6). For selection of a
‘complex’ vertex for penalization the procedure shown in Fig. 7 is
followed until a preset number of calls to the three functions (im-
plicit, explicit and objective) are collectively exceeded.
2.3. Testing for collapse of a ‘complex’

A ‘complex’ is said to have collapsed in a subspace if the ith
coordinate of the centroid is identical to the same of all ‘k’ vertices
of the ‘complex’ (Fig. 8). This is a sufficiency condition and detects
collapse of a ‘complex’ when it lies parallel along a coordinate axis.
Once a ‘complex’ has collapsed in a subspace it will never again be
able to span the original N-dimensional space. The word ‘‘identi-
cal’’ here implies ‘‘identical within the resolution of Ucpx which is
a parameter for detection of ‘complex’ collapse. Numbers x and y
are considered to be identical within the resolution of Ucpx if x
and {x + Ucpx(x � y)} have the same numerical values. For Ucpx set
to 10�2, if x and y differ by not more than the last two least signif-
icant digits they will be considered identical.



Fig. 7. Selection of a ‘complex’ vertex for penalization.
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Fig. 8. Collapse of a ‘complex.
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2.4. Dealing with a collapsed ‘complex’

After detecting the collapse of a ‘complex’ onto a subspace cer-
tain actions are taken such that a new full sized ‘complex’ is gen-
erated. It now fully spans the N-dimensional feasible space
defined by the explicit and implicit constraints. The ‘complex’ is
next moved as described below.

2.5. Movement of a ‘complex’

In a nutshell the process begins by selecting the worst vertex
‘ng = d’ of the current ‘complex’ ‘abcd’ for penalization and then
ascertaining feasibility of the centroid of the remaining (k � 1) ver-
tices ‘abc’. If it is found to be infeasible, then appropriate steps are
taken to regain its feasibility. The worst vertex ‘ng = d’ is next
penalized by over-reflecting (Fig. 9) it on the feasible centroid of
the remaining vertices to generate a new feasible trial point xr,

xr ¼ ð1þ aÞC � axg ð5Þ

where a is reflection coefficient.
Outcome of this reflection step is next ascertained, and if found

to be over successful then expansion step is executed using expan-
sion coefficient (c). If, however, the refection step is found to be
unsuccessful, then either one of two types of contraction steps is
applied both of which uses contraction coefficient (b). Application
of expansion step or contraction step will generate a new feasible
trial point, xr. A full detail of this crucial step is fully described in a
monograph [12].
2.6. Convergence tests

While executing the process, movement of a ‘complex’, tests for
convergence are made periodically after certain preset number of
calls to the objective function. There are two levels of convergence
tests. The first convergence test would succeed only if a predefined
number of consecutive lowest function values are identical within
the resolution of the convergence parameter U, which should be
greater (smaller value of negative exponent) then Ucpx. The second
convergence test is attempted only if the above first convergence
test succeeds. This second test verifies whether the function values
at all vertices of the current ‘complex’ are also identical within the
resolution of U.
3. Minimum cost design problem statement

Formulation and integration of the cost minimization problem
for the bridge system to the optimization algorithm is shown in
Fig. 10.



Fig. 10. Minimization problem formulation and linking with EVOP.
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3.1. Design variables

For the minimum cost design of the presented two span contin-
uous PC I-girder bridge structure (Fig. 11), the design variables
considered are girder spacing, various cross sectional dimensions
of the girder, number of strands per tendon, number of tendons,
tendon layout and configuration, slab thickness, slab reinforce-
ment and negative flexural reinforcement in the deck slab over
pier. These variables are specifically mentioned in Table 1 and
shown in Fig. 12. They are classified in three types as continuous,
discrete and integer. To vary the tendon profile and arrangement,
two design variables (lowest tendon position at the end section,
y1 and number of tendons at lowest layer of mid section, NTLM)
are considered as shown in Fig. 13. The vertical positions of other
tendons are calculated according to the requirements of end bear-
ing and anchorage system. Negative moment reinforcement is pro-
vided within the cast-in-place deck slab for live load continuity at
interior supports.

3.2. Cost function

The total cost (CT) of the bridge system consists of four compo-
nents – CGC, CDC, CPS and COS. Where CGC, CDC, CPS and COS are the cost
of materials, fabrication and installation of girder concrete, deck
L

Section 1Section 3Section 4 Section 2

Fig. 11. Two span continuous po

Table 1
Design variables.

Design variables Variab

Girder spacing (m) X1

Girder depth (mm) X2

Top flange width (mm) X3

Bottom flange width (mm) X4

Bottom flange thickness (mm) X5

Number of strands per tendon X6

Number of tendons per girder X7

Lowest tendon position at the end section (mm) X8

Number of tendons at lowest layer of mid section X9

Initial stage prestress (% of full prestress) X10

Slab thickness (mm) X11

Slab main reinforcement ratio X12

Reinforcement ratio in negative moment section X13
slab concrete, prestressing steel and ordinary steel for deck rein-
forcement, girder’s shear reinforcement and reinforcement at neg-
ative moment section respectively. Hence, the total cost is
formulated as:

CT ¼ CGC þ CDC þ CPS þ COS ð6Þ

Costs of individual components per girder are calculated as per
the following equations:

CGC ¼ ðUPGCVGC þ UPGFSAGÞ ð7Þ

CDC ¼ ðUPDCVDC þ UPDFSADÞ ð8Þ

CPS ¼ ðUPPSWPS þ 2UPANCNANC þ UPSHTLSHÞ ð9Þ

COS ¼ UPOSðWOSD þWOSG þWOSNÞ ð10Þ

where UPGC, UPDC, UPPS and UPOS are the unit prices including mate-
rials, labor, fabrication and installation of the precast girder con-
crete, deck concrete, prestressing steel and ordinary steel
respectively. UPGF, UPDF, UPANC, UPSH are the unit prices of girder
formwork, deck formwork, anchorage set and metal sheath for duct
respectively; VGC, VDC, WPS, WOSD and WOSG are the volume of the
precast girder concrete and deck slab concrete, weight of prestress-
ing steel and ordinary steel in deck and in girder respectively; WOSN
L

st-tensioned I-girder bridge.

le name Variable symbol Variable type

S Discrete
Gd Discrete
TFw Discrete
BFw Discrete
BFt Discrete
Ns Integer
NT Integer
y1 Continuous
NTLM Integer
g Continuous
t Discrete
q Continuous
qn Continuous
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Fig. 12. Girder section with design variables.
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is the ordinary reinforcement at negative moment section; SAG and
SAD are the surface areas of the girder and the deck respectively;
NANC is number of anchorages; TLSH is total length of the tendon
sheath.

3.3. Explicit constraints

These constraints are directly related to the design variables
and restrict their range. They are specified limitations (upper or
lower bounds) on design variables and are derived from various
considerations such as functionality, fabrication, or aesthetics. A
typical constraint is defined as:
Table 2
Explicit constraints.

Variable name Variable symbol Explicit constraint

X1 S BW/10 6 S 6 BW

X2 Gd 1000 6 Gd 6 3500
X3 TFw 300 6 TFw 6 S
X4 BFw 300 6 BFw 6 S
X5 BFt a 6 BFt 6 600
X6 Ns 1 6 Ns 6 27
X7 NT 1 6 NT 6 20

Note: BW = bridge width; a = clear cover + duct diameter; web width, Ww = clear cover
anchorage; and qmin and qmax are respectively minimum and maximum permissible re
minimum and maximum permissible reinforcement at negative moment section.
XL 6 X 6 XU ð11Þ

where X = design variable, XL = lower limit of the design variable,
XU = upper limit of the design variable. The explicit constraints for
each of the design variables are shown in Table 2.

3.4. Implicit constraints

These constraints are indirectly related to the design variables
and represent the performance requirements of the bridge system
as per various specifications. A total of 51 implicit constraints are
considered according to the AASHTO Standard Specifications
(AASHTO) [29] and are classified into nine categories (IC-1–IC-9).

3.4.1. IC-1 (ultimate flexural strength constraints)
The ultimate bending moment capacities to carry all the re-

quired dead and live loads are considered both at maximum posi-
tive moment and negative moment sections. The ultimate flexural
strength constraint is:

0 6 Mu 6 uMn ð12Þ

where Mu is the factored bending moment and uMn is the flexural
strength of the girder.

3.4.2. IC-2 (ductility constraints)
According to AASHTO, two constraints are applied to limit the

maximum and minimum values of the prestressing steel so that
it yields when the ultimate capacity is reached (Eqs. (13) and (14)).

0 6 w 6 wu ð13Þ

1:2M�
cr 6 uMn ð14Þ

where w = reinforcement index and wu = upper limit to reinforce-
ment index; M�

cr = cracking moment of the girder.
Variable name Variable symbol Explicit constraint

X8 y1 AM 6 y1 6 1000
X9 NTLM 1 6 NTLM 6 NT

X10 g 1% 6 g 6 100%
X11 t 175 6 t 6 300
X12 q qmin 6 q 6 qmax

X13 qn qnmin 6 qn 6 qnmin

+ web rebars diameter + duct diameter; AM = minimum vertical edge distance for
inforcement of slab according to AASHTO (2002); qnmin and qnmax are respectively



Fig. 15. Perspective of a girder free to roll and deflect laterally [31].
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3.4.3. IC-3 (flexural working stress constraints)
These constraints ensure stress in concrete not to exceed the

allowable stress value both at transfer and under service loads.
The constraints are given by:

rL
6 r 6 rU ð15Þ

where

r ¼ � F
A
� Fe

S
�M

S
ð16Þ

rL = allowable compressive stress (lower limit), rU = allowable ten-
sile stress (upper limit) and rj = the actual working stress in con-
crete; A = cross sectional area of the girder; F, e, S,
M = prestressing force, tendons eccentricity, section modulus and
working moment respectively. These constraints are considered as
per AASHTO at all the critical sections along the entire span of the
girder as shown in Fig. 14, and for various loading stages (initial
stage and service conditions). As prestress losses are also implicit
functions of some of design variables, they are estimated according
to AASHTO, instead of using lump sum value for greater accuracy.

3.4.4. IC-4 (ultimate shear strength and horizontal shear strength
constraints)

The ultimate shear constraint (Eq. (17)) is satisfied to be less
than or equal to the nominal shear strength times the resistance
factor.

uVs 6 0:67
ffiffiffiffi
f 0c

q
Wwds ð17Þ

where Vs = shear carried by the steel in kN; Ww = width of web of
the girder; ds = effective depth for shear; and u = strength reduction
factor for shear.

Cast-in-place concrete decks designed to act compositely with
precast girder must be able to resist the horizontal shearing forces
at the interface between the two elements. The constraint for hor-
izontal shear is,

Vu 6 uVnh ð18Þ

Vu = factored shear force acting on the interface; and Vnh = nominal
shear capacity of the interface.

3.4.5. IC-5 (deflection constraint)
According to AASHTO Standard Specification PC girder having

continuous spans is designed so that the deflection due to service
live load plus impact shall not exceed 1/800 of the span. Deflection
constraint due to live load [30] is,

DLL ¼
5L2

48EcIc
½Mmax � 0:1ðMa þMbÞ� 6

L
800

ð19Þ

where Mmax = the maximum positive moment due to live load; Ma

and Mb = the corresponding negative moment at the ends of the
After Anchor Set

Before Anchor Set

ANCL

Length alo

Jacking Force, F

Section3 Section2Section4

Fig. 14. Variation of prestressing fo
span being considered; Ec = modulus of elasticity of girder concrete
and Ic = moment of inertia of the composite girder section.
3.4.6. IC-6 (tendon profile constraint)
This constraint limits the tendon profile so that the extreme fi-

ber tension remains within the allowable limits. It is,

Gd

6
þ 0:25

ffiffiffiffiffi
f 0ci

q AEGd

6Fi
6 e 6

Gd

6
þ 0:5

ffiffiffiffi
f 0c

q AEGd

6Fe
ð20Þ

where AE = cross-sectional area of the end section of the girder; Fi, Fe

are prestressing forces after instantaneous losses and all losses at
end section respectively; and f 0ci; f 0c = initial and 28 days compres-
sive strengths of girder concrete respectively.
3.4.7. IC-8 (deck slab constraint)
For ultimate strength design of deck slab, the constraint related

to required effective depth for deck slab is,

Dmin 6 dreq 6 dprov ð21Þ

where dreq, dprov, dmin = required, provided and minimum effective
depth of deck slab respectively.
3.4.8. IC-9 (lateral stability constraint)
During handling and transportation, support conditions may re-

sult in lateral displacements of the beam, thus producing lateral
bending about the weak axis (Fig. 15). The following constraint,
according to PCI [31], ensures the safety and stability during lifting
of long girder subject to roll about the weak axis,

FSC P 1:5 ð22Þ

where FSc = factor of safety against cracking of top flange when the
girder hangs from the lifting loop.
WC
L

ES
L

tL

ng span, x

 Prestressing
Force at section1
after initial loss, F1i

 Prestressing
Force at section1
after totlal loss, F

Section1

CL

1e

rce along the length of girder.



Table 5
Control parameters for EVOP.

EVOP control parameters Default
values

Range

Reflection coefficient, a 1.2 1.0–2.0
Contraction coefficient, b 0.5 0–1.0
Expansion coefficient, c 2.0 >1.0
Convergence parameter, U 10�13 10�16–10�8

Parameter to detect collapse of complex, Ucpx 10�14 10�16–10�8

Explicit constraint retention coefficient, D 10�12

Table 6
Input parameters for EVOP.

Input parameters with values

Number of complex vertices, K = 14
Maximum number of times the three functions can be collectively called,

LIMIT = 100,000
Dimension of the design variable space, N = 13
Number of implicit constraint, NIC = 51
Number of EVOP restart, NRSTRT = 50
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4. Practical example and discussion

In this section, an example is provided to demonstrate the
application of the optimization approach presented in this paper.
The example consists of two span continuous post-tensioned PC
I-girder bridge structure (each span = 50 m) made composite with
cast-in situ deck slab. Continuity is achieved by applying mild steel
reinforcement in the deck slab. The girder is made continuous for
live load and superimposed dead loads only. The constant design
parameters used are summarized in Tables 3 and 4. The relative
cost data for materials, labor, fabrication and installation used
are obtained from the Roads and Highway Department (RHD) cost
schedule [32].

The EVOP code is written in FORTRAN. A computer program
coded in the C++ language is used to analyze the bridge structure,
to input the control parameters, to code the objective function, the
function to evaluate explicit constraints and the function to evalu-
ate implicit constraints and to define a starting point inside the fea-
sible space. The program is then integrated with EVOP using the
technique of FORTRAN to C++ conversion.

To begin with, the values of the control parameters are assigned
with their default values and other input parameters are set to spe-
cific numerical values as tabulated in Tables 5 and 6. The EVOP
control parameters a, b, c are next varied sequentially within the
recommended range for successful convergence and lowest num-
ber of objective function evaluation. The most sensitive parameter
is a. Numerical values of the parameters U and Ucpx are then grad-
ually increased in decade steps, making sure U is a decade or two
greater than Ucpx. The above process is repeated to obtain greater
convergence accuracy. NRSTRT is the number of automatic restart
of EVOP to check that the previously obtained value is the global
Table 3
Bridge design data and material properties.

Bridge design data Material properties

Two span continuous (each
span = 50 m)

Ultimate strength of prestressing steel,
fpu = 1861 MPa

Girder length = 50 m (L = 48.8 m) Yield stress of ordinary steel,
fy = 410 MPa

Bridge width, BW = 12.0 m (three
lane)

Girder concrete strength, f 0c = 50 MPa

Live load = HS20–44 Deck slab concrete strength,
f 0cd = 25 MPa

No. of diaphragm = 4; diaphragm
width = 250 mm

Initial girder concrete strength,
f 0ci = 30 MPa

Wearing surface = 50 mm Wobble and friction coefficients,
K = 0.005/m

Curb height = 600 mm; curb
width = 450 mm

Friction coefficients, l = 0.25

7 Wire 15.2 mm diameter low-
relaxation strand

Anchorage slip, d = 6 mm

Freyssinet anchorage system [33]

Table 4
Cost data.

Item Unit Tota
($)

Precast girder concrete-including equipment and labor
(UPGC)

per m3

(40 MPa)
180

Girder formwork (UPGF) per m2 5
Cast-in-place deck concrete (UPDC) per m3 85
Deck formwork-equipment and labor (UPDF) per m2 4.5
Girder posttensioning-tendon, equipment and labor (UPPS) per ton 128
Anchorage set (UPANC) per set 65
Metal sheath for duct (UPSH) per lin. meter 1.3
Mild steel reinforcement for deck and web in girder (UPOS) per ton 640
minimum. If NRSTRT = 50, the EVOP program will execute 50
times. For first time execution a starting point of the complex in-
side the feasible space has to be given. For further restart the com-
plex is generated taking the coordinates of the previous minimum
(values obtained from previous execution of EVOP) as the starting
point of the complex.
4.1. Initial complex configuration

As there are 13 (N = 13) numbers of design variables in the pro-
posed optimization problem, the complex will occupy a 13-dimen-
sional parameter space having 14 (K P N + 1) number of vertices
inside the feasible region. Each of the vertices will have 13 num-
bers of co-ordinates (X1 to X13) as shown in Table 7. After providing
a feasible starting point (vertex no. 1 shown in Table 7), EVOP gen-
erates the remaining 13 vertices of the initial complex. Each vertex
of the initial complex as shown in Table 7 is feasible solution or de-
sign of the bridge. It indicates that many alternative designs of the
bridge can exist with different costs of the bridge. The cost of the
bridge as shown in Table 7 typically varies from 81,718 US$ to
123,445 US$.

After first execution of EVOP, the coordinates for the minimum
cost design are as shown in Table 8.
4.2. Restart of EVOP to check the minimum

Automatic restart of EVOP takes place to check whether the pre-
viously obtained minimum is the global minimum. The new initial
l cost Material cost
($)

Labor cost
($)

Installation and fabrication cost
($)

60 45 75

5
68 13 4

4.5
5 1202 72 11

65
1.3
595 44 1



Table 7
Vertices of initial complex.

Vertex no. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 CT (US$)
S (m) Gd (mm) TFw (mm) BFw (mm) BFt (mm) NS NT y1 (mm) NTLM g (%) t (mm) q (%) qn (%)

1 3.0 3000 1245 1200 255 10 7 930 7 53 210 0.628 0.300 99,105
2 3.0 2950 1225 1200 270 10 7 985 7 52 215 0.644 0.412 101,744
3 2.4 2975 1225 1200 260 10 7 960 7 53 210 0.627 0.336 119,498
4 3.0 2950 1325 1100 275 9 8 995 8 55 210 0.696 0.586 102,122
5 3.0 2875 1200 1175 300 9 8 890 7 52 215 0.802 0.486 103,907
6 3.0 2975 1250 1175 270 9 7 940 7 53 215 0.680 0.410 98,328
7 2.4 2775 1150 1150 320 8 8 1155 6 63 225 0.982 0.532 123,445
8 3.0 2925 1200 1125 305 10 8 1040 7 52 220 0.781 0.562 107,560
9 3.0 2900 1200 1200 280 9 7 1010 7 54 220 0.702 0.564 101,665

10 3.0 2925 1300 1350 260 11 8 1125 8 50 220 0.907 0.960 121,378
11 3.0 2875 1200 1225 285 9 8 990 7 52 220 0.80 0.568 106,576
12 3.0 2900 1225 1150 295 10 7 1025 7 55 215 0.810 0.511 103,542
13 3.0 2900 1200 1275 290 10 7 1100 7 60 215 0.80 0.525 107,015
14 3.0 2775 1425 600 295 10 6 738 3 54 230 0.61 0.683 81,718

Table 8
Value of design variables after first execution.

S (m) Gd (mm) TFw (mm) BFw (mm) BFt (mm) NS NT y1 (mm) NTLM t (mm) q (%) qn (%) g (%) CT (US$)

3.0 2725 1500 525 200 7 5 967 4 210 0.60 0.63 46 67,239

Table 9
Value of design variables after restarts.

S (m) Gd (mm) TFw (mm) BFw (mm) BFt (mm) NS NT y1 (mm) NTLM g (%) t (mm) q (%) qn (%) CT (US$)

First restart 3.0 2725 1500 525 200 7 5 965 4 46 210 0.60 0.62 67,179
Second restart 3.0 2800 1450 450 185 7 5 970 4 44 210 0.60 0.701 66,375
Third restart 3.0 2800 1450 450 185 7 5 970 4 44 210 0.60 0.698 66,366
Fourth restart 3.0 2600 1250 475 145 8 5 860 4 41 210 0.63 0.763 65,986

Table 10
Computational effort by EVOP.

OFa ECa ICa T (s)

First execution 463 2813 1621 10
First restart 170 3388 1719
Second restart 424 9632 4813
Third restart 36 319 200
Fourth restart 79 504 336

a Number of evaluations; OF = objective function; EC = explicit constraint;
IC = implicit constraint; T = total time required for 50 restarts (s).

ρ=0.63% n=0.76%
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Fig. 16. Optimum values of design variables (dimensions are in mm).
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complex is generated taking the coordinates of the previous mini-
mum (values obtained from previous execution of EVOP) as the
starting point of the new complex. After four restarts of EVOP the
coordinates for the minimum cost design are as shown in Table 9.

Further many restarts of EVOP give the same coordinates of the
minimum as obtained after the fourth restart; that is no further
improvement in the design could be obtained. It was, therefore,
inferred that the coordinates of the minimum obtained after the
fourth restart are indeed the optimum solutions, with a minimum
objective function value of F = 65,986 US$. The computational
Table 11
Minimum cost design and existing design.

S
(m)

Gd

(mm)
TFw

(mm)
BFw

(mm)
BFt

(mm)
NS NT y1

(mm)
NTLM t

(mm)
q
(%)

qn

(%)
g
(%)

CT

(US$)

Minimum design 3.0 2600 1250 475 145 8 (0.600 dia.) 5 860 4 210 0.63 0.76 53 65,986
Existing design 2.4 2500 1060 710 200 12 (0.500 dia.) 7 400 4 188 0.82 – 43 102,480

Saving ¼ 102;480�65;986
102;480 � 100 ¼ 35:6%
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efforts by EVOP are tabulated in Table 10. The values of control
parameters used are, a = 1.5, b = 0.5, c = 2, U = 10�13, Ucpx = 10�15.

The minimum cost design when compared with an existing
conventional design of a PC I-girder bridge of same span [34]
shows around 36% savings in cost. Table 11 compares the existing
design and optimum design and their costs. Cross-sections show-
ing the optimum design and the existing design are shown in Figs.
16 and 17.

Tendon profiles along the girder span are shown in Fig. 18 and
Table 12. The optimization problem with 13 mixed type design
variables and 51 implicit constraints converges with relatively
small number of objective function evaluations (Table 10) with
three digit convergence accuracy in the present problem of five di-
git objective functional value. The corresponding numbers of expli-
=0.82%
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Fig. 18. Tendon profile in the minimum cost design.

Table 12
Tendon profile along the girder span.

x (mm) Tendon 1 Tendon 2 Tendon 3 Tendon 4 Tendon 5
y (mm) y (mm) y (mm) y (mm) y (mm)

0 860 1065 1270 1475 1680
25000 73 73 73 73 181
50000 860 1065 1270 1475 1680

Table A1
Functional value of f(X6).

X6 1–3 4 5–7 8–9 10–13 14–19 21–22 23–27
f(X6) 125 130 145 150 165 180 190 195
cit and implicit constraints evaluations are also comparatively
smaller. Intel COREi3 processor has been used in this study and
computational time required for optimization by EVOP for 50
times restart, is around only 10 s.

5. Conclusions

In this paper, an optimization problem namely cost minimiza-
tion of two-span continuous PC girder bridge is solved for a signif-
icant number of design variables pertaining to both the girders and
the deck. A constrained global optimization algorithm named EVo-
lutionary OPeration (EVOP) is used which is capable of locating di-
rectly with high probability the global minimum of an objective
function of several variables and of arbitrary complexity subject
to explicit and implicit constraints. A computer program in C++ is
developed for the minimum cost design of PC I-girder bridge sys-
tem. It is difficult to solve the proposed constrained global optimi-
zation problems of 13 numbers of mixed integers, discrete and
continuous design variable and a large number of implicit con-
straints by using gradient based optimization methods. It has been
shown that such a problem can, however, be easily solved using
EVOP with a relatively small number of function evaluations. To
demonstrate that optimization of such problems really results in
considerable economy, a practical example of this application is
presented here and it results in an optimum solution or the mini-
mum cost design which leads to a saving of around 36%. Further-
more, the computer time used for the design was merely a total
of 10 s. So far we have discussed about the optimization of the
bridges considering only the construction cost. In reality, service
life costs (inspection, maintenance and rehabilitation) may also
be significant in comparison to initial construction cost of a bridge
project. Furthermore, consideration of the uncertainties related to
materials, loads and environment may alter the optimum design
[35]. So, further research is necessary to extend the proposed study
considering the service life costs, all the uncertainties related to
materials and structures. For this purpose, multi-objective optimi-
zation approaches should further be explored to consider both
costs and structural robustness.

Appendix A

See Table A1.

VGC ¼ 100X3 þ 5000þ f ðX6ÞfX2 � 100� 1:125X5 þ 0:125f ðX6Þ½

� 0:125X4g þ 1:125X4X5 � 0:25pX7ff ðX6Þ � 80g2
i
L ðA1Þ

VDC ¼ X1X11L ðA2Þ

WPS ¼ 140cstX6X7L ðA3Þ

WOSDf2X12ðX11 � 57ÞX1Lþ gðxÞX1Lþ 0:265X1Lgcst ðA4Þ

where cst = unit weight of prestressing steel.
and gðxÞ ¼minð0:007216=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 � 0:5X3
p

;0:67Þ � X12 � ðX11 � 57Þ

WOSG ¼ AV LVcst ðA5Þ

where LV is implicitly related to many of the design variables.

WOSN ¼ 0:25½X13X4ðX2 þ 0:5X11Þ � f0:265þ gðxÞgX1�Lcst ðA6Þ
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