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Abstract: This paper presents an optimization approach to the design of simply supported, post-tensioned, prestressed concrete I-girder
bridges. The objective is to minimize the total cost of the structure, considering cost of materials, fabrication, and installation. For a particular
girder span and bridge width, the design variables considered for cost minimization of the bridge system are girder spacing, various cross-
sectional dimensions of the girder, number of strands per tendon, number of tendons, tendon layout and configuration, slab thickness, slab
rebar, and shear rebar for the girder. Explicit constraints on the design variables are developed on the basis of geometric requirements,
practical conditions for construction, and code restrictions. Implicit constraints for design are formulated as per the American Association
of State Highway and Transportation Officials (AASHTO) Standard Specifications. The optimization problem is characterized by having a
combination of continuous, discrete, and integer sets of design variables and multiple local minima. An optimization algorithm, evolutionary
operation (EVOP), is used that is capable of locating directly with high probability the global minimum without requiring information on
gradient or subgradient of the objective function. The present optimization approach is used for a real-life bridge project, leading to a feasible
and acceptable design resulting in around 35% savings in cost per square meter of the deck area. Computational time required for opti-
mization of the present problem is only a few seconds. Because constant design parameters have influence on the optimum design, this cost
minimization procedure is performed for a range of such parameters. DOI: 10.1061/(ASCE)ST.1943-541X.0000458. © 2012 American
Society of Civil Engineers.
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Introduction

Prestressed concrete (PC) I-girder bridge systems are ideal as short
to medium span (20 to 60 m) highway bridges because of their
moderate self weight, structural efficiency, ease of fabrication, fast
construction, low initial cost, long life expectancy, low mainte-
nance, simple deck removal, and replacement (Precast/Prestressed
Concrete Institute (PCI) 2003). To compete with steel bridge sys-
tems, the design of PC I-girder bridges should lead to the most eco-
nomical use of materials (PCI 1999). Large numbers of design
variables are involved in the design process of the PC I-girder
bridges, and all variables are related to one other, leading to numer-
ous alternative feasible designs. In the traditional design approach,
bridge engineers follow iterative procedures for designing pre-
stressed I-girder bridge structures. There is no formal attempt to
reach the best design in the strict mathematical sense of minimizing
cost, weight, or volume. The design process relies solely on the
designers’ experience, intuition, and ingenuity resulting in a high
cost in material, time, and human effort.

The optimum design procedure is an alternative to the tradi-
tional design approach. Such a design usually implies the most
economic structure without impairing any of its functional pur-
poses. The optimization technique transforms the conventional de-
sign process of trial and error to a formal, systematic, and digital
computer-based automated procedure that yields a design that is the
best in the designer-specified figure of merit—the goodness factor
of design. Advances in numerical optimization methods, computer-
based numerical tools for analysis, and design of structures and
availability of powerful computing hardware have all significantly
aided the design process. So, the time is now appropriate to perform
research on realistically optimizing three-dimensional structures,
especially large structures with hundreds of members where opti-
mization can result in substantial savings (Adeli and Sarma 2006).
Large and important projects containing I-girder bridge structures
have the potential for substantial cost reduction through application
of optimum design methodology and thus, will be of great value to
practicing engineers.

Many research performed on structural optimization deal with
minimization of the weight of the structure (Vanderplaats 1984;
Arora 1989; Adeli and Kamal 1993; Adeli 1994; Cohn and
Dinovitzer 1994; Adeli and Sarma 2006). For concrete structures,
however, the approach to optimum design may take the form of cost
minimization problem because different materials are involved. A
review of articles pertaining to the cost optimization of concrete
structures is presented by Sarma and Adeli (1998) and the same
for concrete bridge structures by Hassanain and Loov (2003).
Torres et al. (1966) and Fereig (1985, 1996) presented the mini-
mum cost design of prestressed concrete bridges using the linear
programming method. Cohn and MacRae (1984a, b) studied the
minimum cost design of fully prestressed and partially prestressed
concrete I-beams with fixed cross-sectional geometry using a
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nonlinear programming technique. Jones (1985), Yu et al. (1986),
and Fereig (1994) formulated a minimum cost design of the PC box
girder bridge system. Lounis and Cohn (1993) presented a cost
optimization method for short and medium span pretensioned
PC I-girder bridge. Nonlinear programming methods (projected
Lagrangian method and sieve-search technique) were utilized to
obtain the minimum superstructure cost as a criterion for the best
design. They first found the maximum feasible girder spacing
for each standard Canadian Precast Concrete I (CPCI) girder
and American Association of State Highway and Transportation
Officials (AASHTO) sections and then minimized the prestressed
and non-prestressed reinforcement in the I-girder and the deck.
Costs of individual components, such as the girders or the deck,
were then minimized. No attempt was made regarding ascertaining
the optimal girder cross section and the spacing that may minimize
the total cost inclusive of the cost of the bridge deck. Sirca and
Adeli (2005) presented an optimization method for minimizing
the total cost of the pretensioned PC I-beam bridge system by con-
sidering the concrete area, deck slab thickness, reinforcement, sur-
face area of formwork, and number of beams as design variables.
The problem is formulated as a mixed integer-discrete nonlinear
programming problem and solved by using a patented robust neural
dynamics model. They did not consider cross-sectional dimensions
as design variables; instead, they used standard AASHTO sections.
In the studies discussed previously, the prestressing strands/tendons
were assumed to be located at a fixed eccentricity. In reality, how-
ever, strands/tendons are located at different positions at a cross
section of the girder. The longitudinal profiles of tendons also vary
depending on their location on a cross section. Again, a lump-sum
value (a certain percentage of initial prestress) of prestress losses
was estimated in these studies. As prestress losses are implicit func-
tions of material properties, girder geometry and construction
method, a more accurate assessment of these losses, however, is
required for greater precision. Ayvaz and Aydin (2009) presented
a study on minimizing the cost of a pretensioned PC I-girder bridge
through topological and shape optimization. This topological and
shape optimization of the bridge system were performed together
with a genetic algorithm (GA).

In this paper, an optimum design approach for simply supported
post-tensioned I-girder bridges with cross-sectional dimensions and
tendon arrangements as design variables is developed, while con-
sidering the cost of materials, including fabrication and installation.
The bridge system consists of precast girders with a cast-in situ
reinforced concrete deck. A large number of design variables and
constraints are considered, and an optimization algorithm evolu-
tionary operation (EVOP) (Ghani 1989) is used. The algorithm
is capable of dealing with an objective function containing a mix
of integer, discrete, and continuous design variables and locating
directly the global minimum with a high probability. The EVOP
code is written in FORTRAN. The main program that executes
EVOP is developed in C++ language to formulate the mathematical
expressions required for analysis and design of the bridge system,
to define a starting point inside the feasible space, and to input
EVOP control parameters. Three functions are also defined in this
program: an objective function, an explicit constraint function, and
an implicit constraint function, all required by the EVOP code. All
are then compiled, linked, and executed to perform a cost optimum
design of the previously discussed bridge system. A case study is
presented by comparing the optimum design obtained by the
present approach with the design of a recently constructed struc-
ture. A parametric study is also conducted by optimizing the design
of post-tensioned PC I-girder bridges for different sets of values of
constant parameters.

Problem Formulation

Design Variables and Constant Design Parameters

For a particular girder span and bridge width, the design variables
considered in this study are the spacing of girders, cross-sectional
dimensions of a girder, number of strands per tendon, number of
tendons, configuration of tendons, deck slab thickness, and deck
slab reinforcement. The design variables and variable types are
tabulated in Table 1. A typical cross section of the PC I-girder
is illustrated in Fig. 1 to show several of these design variables.
The constant design parameters under consideration are various

Table 1. Design Variables with Explicit Constraints

Design variables
Variable
type Explicit constraint

Girder spacing (S) (m) Discrete BW=10 ≤ S ≤ BW

Girder depth (Gd) (mm) Discrete 1;000 ≤ Gd ≤ 3;500

Top flange width (TFw) (mm) Discrete 300 ≤ TFw ≤ S

Top flange thickness (TFt) (mm) Discrete 75 ≤ TFt ≤ 300

Top flange transition thickness

(TFTt) (mm)

Discrete 50 ≤ TFTt ≤ 300

Bottom flange width (BFw) (mm) Discrete 300 ≤ BFw ≤ S

Bottom flange thickness (BFt) (mm) Discrete a ≤ BFt ≤ 600

Web width (Ww) (mm) Discrete b ≤ Ww ≤ 300

Number of strands per tendon (Ns) Integer 1 ≤ Ns ≤ 27

Number of tendons per girder (NT ) Integer 1 ≤ NT ≤ 20

Lowest tendon position at the end

from bottom fiber (y1) (mm)

Continuous AM ≤ y1 ≤ 1;000

Initial stage prestress (% of full

prestress) (η)
Continuous 1% ≤ η ≤ 100%

Slab thickness (t) (mm) Discrete 175 ≤ t ≤ 300

Slab main reinforcement ratio (ρ) Continuous ρmin ≤ ρ ≤ ρmax

Note: BW ¼ bridge width; a ¼ clear cover þ duct diameter; b ¼ clear
cover þ web rebars diameter þ duct diameter; AM ¼ minimum vertical
edge distance for anchorage; and ρmin and ρmax are, respectively, minimum
and maximum permissible reinforcement of slab according to AASHTO
(2002).
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Fig. 1. Girder composite section with design variables
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material properties, superimposed dead loads, AASHTO live loads,
strand size, post-tensioning anchorage system, and unit costs of
materials, including fabrication and installation. The optimization
is on the basis of the analysis of an interior girder, as shown in
Fig. 2. The deck and the girders are assumed to act as a composite
section during the service condition. It is considered that prestress
is applied in two stages—initially a percentage of total prestress is
applied to carry only the girder self weight and finally full prestress
is applied during the casting of the deck slab. In the present study,
the tendon arrangement is considered as variable because it has sig-
nificant effects on prestress losses and flexural stress at various sec-
tions along the girder. Tendon layout along the span is assumed as
parabolic. The vertical and horizontal arrangements of tendons de-
pend on various cross-sectional dimensions of the girder, duct size
and spacing, anchorage spacing, and anchorage edge distance.
Only the Freyssinet C range anchorage system is considered in this
study (Freyssinet 1999). Duct diameter, duct spacing, anchorage
dimension, and anchorage spacing vary with the design variable
of number of strands per tendon, as shown in Table 2. Typical
arrangements of tendons at various sections are shown in Fig. 3.

Objective Function

In this study, the objective of design is cost minimization of a post-
tensioned PC I-girder bridge system by taking into account costs of
materials, fabrication, and installation. The total cost of the bridge
system is determined as follows:

CT ¼ CGC þ CDC þ CPS þ COS ð1Þ
where CGC, CDC, CPS and COS = cost of materials, fabrication, and
installation of girder concrete, deck slab concrete, prestressing
steel, and ordinary steel. Ordinary steel is used for deck reinforce-
ment and the girder’s shear reinforcement. Costs of individual com-
ponents are calculated as follows:

CGC ¼ ðUPGCVGC þ UPGFSAGÞNG ð2Þ

CDC ¼ ðUPDCVDC þ UPDFðS� TFwÞÞNG ð3Þ

CPS ¼ ðUPPSWPS þ 2UPANCNT þ UPSHNTLÞNG ð4Þ

COS ¼ UPOSðWOSD þWOSGÞNG ð5Þ

where UPGC, UPDC, UPPS and UPOS = unit prices, including
materials, labor, fabrication, and installation of the precast girder
concrete, deck concrete, prestressing steel, and ordinary steel re-
spectively; UPGF, UPDF, UPANC, UPSH = unit prices of girder
formwork, deck formwork, anchorage set, and metal sheath for the
duct, respectively; VGC, VDC, WPS, WOSD and WOSG = volumes of
the precast girder concrete and deck slab concrete, weight of the
prestressing steel and ordinary steel in the deck and girder, respec-
tively; L = girder span; NG = number of girders; S = girder spacing;
and SAG = surface area of girder.

Explicit Constraints

These are specified limits (upper or lower limit) on design variables
that are derived from geometric requirements (e.g., superstructure
depth and clearances), minimum practical dimensions for construc-
tion, and code restrictions.
• Explicit constraints for the girder spacing: Lower and upper

limits on girder spacing are considered such that the number
of girders in the bridge can vary from 1 to 10.

• Explicit constraints for the top flange: The lower limit of the top
flange width is assumed as 300 mm from lateral stability and
bearing considerations, and the upper limit is equal to girder
spacing. The lower limit of top flange thickness is considered
75 mm to resist damage during handling and to provide ade-
quate space for proper placement of transverse reinforcement
and the upper limit is assumed as 300 mm. The lower limit
of top flange transition thickness is considered 50 mm to facil-
itate placement and consolidation of concrete, and the upper
limit is assumed as 300 mm. The haunch thickness and width
are both assumed as 50 mm.

• Explicit constraints for the web: The lower limit of the web
width is equal to the sum of the diameter of a duct and diameter
of the web rebars plus a clear cover. The upper limit is assumed
as 300 mm.

• Explicit constraints for the bottom flange: The lower limit of
bottom flange width is assumed as 300 mm to accommodate
anchorage setup, and the upper limit is equal to the girder spa-
cing. The lower limit of thickness is equal to the clear cover plus

Table 2. Minimum Dimensions for C Range Anchorage System

Number of strands per tendon 1–3 4 5–7 8–9 10–12 (mm) 13 14–19 21–22 23–27

Duct diameter (mm) 45 50 65 70 85 85 100 110 115

Duct clear spacing (DS) (mm) 38 38 38 38 38 38 38 50 50

AD (mm) 110 120 150 185 200 210 250 275 300

AM (mm) 128 150 188 210 248 255 300 323 345

Note: AD = anchorage dimension.

S

Bw

DECK SLABt

S / 2 S / 2

Fig. 2. Girders arrangement in the bridge

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / FEBRUARY 2012 / 275

Downloaded 08 Jun 2012 to 150.135.239.97. Redistribution subject to ASCE license or copyright. Visit http://www.ascelibrary.org



duct diameter to fit at least one row of tendons. The upper limit
is assumed as 600 mm. The width to thickness ratio of the
bottom flange transition area is assumed as 2 to 1 from a prac-
tical construction point of view.

• Explicit constraints for the girder depth: The lower limit of
the girder depth is considered 1,000 mm and the upper limit
is 3,500 mm, which is the common range of the girder depth
to minimize the cost of substructure, approach roads, and
aesthetics.

• Explicit constraints for the number of strands per tendon: Within
the available anchorage system, one tendon may consist of sev-
eral seven-wire strands, typically from 1 to 55. For the present
study, it is considered that each tendon may consist of 1 to 27
strands.

• Explicit constraints for the number of tendons: The amount
of prestressing force required for the cost optimum design is
directly associated with the number of tendons required in
the girder. For this study, it is considered that the number of
tendons may vary from 1 to 20.

• Explicit constraints for the lowest tendon position: To vary the
profile of the tendon along the girder span, the vertical position
of the lowest tendon from the bottom fiber of the end section is
considered a design variable. The vertical positions of other
tendons at the end section are determined from anchorage spa-
cing requirements. The lower limit of this design variable is the
minimum permissible vertical edge distance of the C range

anchorage system shown in Table 2, and the upper limit is
assumed as 1,000 mm.

• Explicit constraints for the deck slab: The lower limit of deck
slab thickness is considered 175 mm to control deflection and
excessive cracking, and the upper limit is 300 mm. The lower
and upper limits of the deck slab reinforcement are considered
according to AASHTO Standard Specification (AASHTO
2002). The explicit constraints for all the previous design vari-
ables are shown in Table 1.

Implicit Constraints

These constraints represent the performance or response require-
ments of the bridge system. A total 46 implicit constraints are con-
sidered according to the AASHTO (2002) and categorized in eight
groups as follows:
1. flexural working stress constraints,
2. flexural ultimate strength constraints,
3. shear constraints (ultimate strength),
4. ductility constraints,
5. deflection constraint,
6. lateral stability constraint,
7. tendon eccentricity constraint, and
8. deck slab design constraint.

The constraints are formulated in subsequent sections.

Flexural Working Stress Constraints

These are the allowable stresses in concrete and are given as
follows:

f L ≤ f j ≤ f U ð6Þ

f j ¼ �Fj

A
� Fjej

Sj
�Mj

Sj
ð7Þ

where f L = allowable compressive stress (lower limit); f U = allow-
able tensile stress (upper limit); f j = the actual working stress in
concrete; A = cross-sectional area of the girder; Fj, ej, Sj, Mj = pre-
stressing force, tendons eccentricity, section modulus, and working
moment at the jth section, respectively. These constraints are con-
sidered at three critical sections along the span of the girder, as
shown in Fig. 4, and for various loading stages (initial stage and
service conditions). Loading stages and the corresponding implicit
constraints are summarized in Table 3. The three critical sections
are the mid section (Section 1), the section at the end of anchorage
and transition zone (Section 2), and the section immediately after
the anchor set in which the prestress is at its maximum value
(Section 3). The end of anchorage and transition zone is assumed
as 1.5 times the girder depth.

Fig. 4. Tendon’s profile along the girder
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Fig. 3. Tendons arrangement in the girder
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Instead of using a lump-sum value, prestress losses are esti-
mated according to AASHTO (2002) for greater accuracy because
prestress losses are also implicit functions of some of the design
variables. The instantaneous losses depend on the jacking equip-
ment, and anchorage hardware used and the design variables
i.e., the number of tendons, number of strands per tendon, layout
of tendon in the girder, prestressing of tendon, and girder cross-
sectional properties. The long-term losses are composed of loss
attributed to the creep of concrete, loss attributed to the shrinkage
of concrete, and loss attributed to steel relaxation. These losses are
also implicit functions of concrete properties and girder cross-
sectional properties. In the case of post-tensioning, prestressing
force varies along the span of the girder. The prestressing forces
after deduction of instantaneous losses at the various sections, as
shown in Fig. 4, are determined as follows [Eqs. (8)–(11)]:

F1i ¼
Xj¼NT

j¼1

F½1� e�ðμθjþKL
2Þ� � LES ð8Þ

F2i ¼ F � 0:5LANC � LES ð9Þ

F3i ¼ F2i � 0:5

�
x2 � x3

x2

�
LANC � LES ð10Þ

F4i ¼ F � LANC � LES ð11Þ
where F1i, F2i, F3i, F4i = prestressing forces after instantaneous
losses at various sections; F = jacking force; LES = elastic short-
ening loss; LANC = anchorage loss; K and μ are wobble and friction
coefficients, respectively; and θj = initial angle at the end section of
the jth tendon.

The prestress forces after all loss deduction at the three sec-
tions are denoted by F1e, F2e, and F3e, respectively. As per
AASHTO (2002), for post-tensioned members, allowable pre-
stressing force for the tendon immediately after seating at anchor-
age is 0:7f puAS, at the end of the seating loss zone it is 0:83f �yAS,
and that at the service load after all loss deduction is 0:80f �yAS. In
the present study, jacking force is considered equal to 0:9f �yAS and
then three constraints [Eq. (12)–(14)] are applied to keep the forces
in the tendon within the allowable limits.

0 ≤ F4i ≤ 0:7f puAs ð12Þ

0 ≤ F2i ≤ 0:83f �yAs ð13Þ

0 ≤ F2e ≤ 0:80f �yAs ð14Þ

where total prestressing steel area, AS ¼ AstrandNSNT ; Astrand =
prestressing steel area per strand; f pu, f �y = ultimate strength and
yield stress of prestressing steel, respectively; and f y = yield stress
of ordinary steel.

Ultimate Flexural Strength Constraints

The ultimate flexural strength constraints for the precast and
composite sections are as follows:

0 ≤ Mpu ≤ φMpn ð15Þ

0 ≤ Mcu ≤ φMcn ð16Þ
where Mpu and Mcu = factored bending moments; and φMpn and
φMcn = flexural strengths of the precast and composite sections,
respectively. To calculate the flexural strength of the composite
section the following four cases are considered:

Case 1: Compression block remains within the deck slab;
Case 2: Compression block remains within the top flange;
Case 3: Compression block remains within the top flange

transition area; and
Case 4: Compression block falls in web (flanged section calcu-

lation is used assuming T shape stress block).

Ductility (Maximum and Minimum Prestressing Steel)
Constraints

The maximum prestressing steel constraint for the composite
section is given as follows:

0 ≤ ω ≤ ωu ð17Þ
where ω = reinforcement index; and wu = upper limit of reinforce-
ment index.

The constraint that limits the minimum value of reinforcement
is

1:2M�
cr ≤ ϕMn ð18Þ

where M�
cr , φMn = cracking moment and ultimate moment at a

critical section, respectively.

Ultimate and Horizontal Shear Strength Constraints

The ultimate shear strength is considered at two sections, the
section at the end of the transition zone and the section where
the prestress is maximum. The related implicit constraint is defined
as follows:

φVs ¼ ðVu � φVcÞ ≤ 0:67
ffiffiffiffi
f 0c

p
Wwds ð19Þ

Table 3. Loading Stages and Implicit Constraints

Loading stage Resisting section Section properties Load combination Implicit constraint

Initial stage Precast section Anet, ei, Snet ηF þ G �0:55f 0ci ≤ f j ≤ 0:25
ffiffiffiffiffi
f 0ci

p
1 Precast section Atf , e, S Fi þ Gþ SBþ DP �0:60f 0c ≤ f j ≤ 0:5

ffiffiffiffi
f 0c

p
2 Precast section Atf , e, S Fe þ Gþ SBþ DP �0:40f 0c ≤ f j ≤ 0:5

ffiffiffiffi
f 0c

p
Composite section SC þSD

3 Precast section Atf , e, S Fe þ Gþ SBþ DP �0:60f 0c ≤ f j ≤ 0:5
ffiffiffiffi
f 0c

p
Composite section SC þðSDþ Lþ IÞ

4 Precast section Atf , e, S 0:5ðFe þ DLÞ �0:40f 0c ≤ f j ≤ 0:5
ffiffiffiffi
f 0c

p
Composite section SC þðLþ IÞ

Note: G = girder self weight; SB = slab weight; DP = diaphragm weight; SD = super-imposed dead load for wearing surface and curb weight; DL = total dead
load; L = live load; I = impact load. Anet, Atf = net area and transformed area of the precast girder; ei, e = eccentricity of tendons at initial stage and at final stage
of precast section, respectively; Snet, S, SC = section modulus of net, transformed, and composite section of girder, respectively; f 0ci, f

0
c = initial and 28 days

compressive strengths of girder concrete, respectively.
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where Vu = factored shear at a section; Vc = the concrete contri-
bution taken as lesser of flexural shear, Vci and web shear, Vcw, in
kilonewtons; and Vs = shear carried by the steel in kN. These two
shear capacities are determined according to AASHTO (2002).

The constraint for horizontal shear for composite section is

Vu ≤ φVnh ð20Þ
where Vnh = nominal horizontal shear strength.

Deflection Constraints

Deflection attributed to live load (AISC Marketing 1986) is

ΔLL ¼ 324
EcIc

PTðL3 � 555Lþ 4780Þ ð21Þ

where PT = weight of one front wheel multiplied by the distribution
factor plus impact; Ec = modulus of elasticity of girder concrete;
and Ic = moment of inertia of the composite girder section.

The live load deflection constraint is

ΔLL ≤ L
800

ð22Þ

End Section Tendon Eccentricity Constraint

The constraint that limits the tendon eccentricity at the end section
so that the extreme fiber tension remains within the allowable limits
is as follows:

Gd

6
þ 0:25

ffiffiffiffiffi
f 0ci

p AendGd

6F4i
≤ e4 ≤ Gd

6
þ 0:5

ffiffiffiffi
f 0c

p AendGd

6F4e
ð23Þ

where Aend = cross-sectional area of the end section of the girder.

Lateral Stability Constraint

The following constraint, according to PCI (2003), ensures the
safety and stability during the lifting of a long girder, subject to
roll about the weak axis

FSC ≥ 1:5 ð24Þ
where FSc = factor of safety against cracking of top flange when the
girder hangs from the lifting loop.

Deck Slab Constraints

The constraint considered for deck slab thickness according to the
design criteria of ODOT (2000) is

t ≥ Sd þ 17
3

ð25Þ

The constraint that limits the required effective depth for deck
slab is

dmin ≤ dreq ≤ dprov ð26Þ
where Sd = effective slab span in feet = S� TFw=2; t = slab
thickness in inches; and dreq, dprov, dmin = required, provided
and minimum effective depth of deck slab, respectively.

Optimization Method

The bridge optimization problem under discussion is characterized
by a large number of design variables and constraints. The design
variables are a combination of continuous, discrete, and integer
types. Expressions for the objective function and the constraints

are nonlinear functions of these design variables. The optimal de-
sign problem, therefore, becomes highly nonlinear and nonconvex,
having multiple local minimums that require a method capable of
locating the global optimum by handling mixed integer, discrete,
and continuous arguments.

The procedure EVOP has successfully minimized a large num-
ber of recognized test problems (Ghani 1989, 1995). An updated
version of EVOP is used in this study that is capable of minimizing
objective functions having a combination of integer, discrete, and
continuous arguments as well. The method treats all arguments as
continuous, but for discrete and integer design variables, the
method picks values from within thin strips centered on specified
values. A Users’ Manual for EVOP with several test examples can
be found in Ghani (2008).

The algorithm can minimize an objective function

f 0ðxÞ ¼ f 0ðx1; x2…xnÞ ð27Þ
where f 0ðxÞ = function of n independent variables
xT ¼ ðx1; x2…xnÞ.

The n independent variables xi‘s ði ¼ 1; 2…:nÞ are subject to
explicit constraints

li ≤ xi ≤ ui ð28Þ
where li‘s and ui‘s = lower and upper limits on the variables, re-
spectively. They are either constants or functions of n independent
variables (moving boundaries). These explicit constraints must de-
fine, at best, a convex or, at worst, a semiconvex n-dimensional
vector-space but never a nonconvex vector-space. Any explicit con-
straint that renders the vector-space nonconvex should be classified
as an implicit constraint discussed subsequently and shifted to the
implicit constraint set. The corresponding variable, however,
should be given a fixed upper and a lower limit and included in
the explicit constraint set, thus, rendering the vector-space defined
by only the explicit constraints to become semiconvex.

These n independent variables xi‘s are also subject tom numbers
of implicit constraints

Lj ≤ f jðx1; x2…xnÞ ≤ Uj ð29Þ

where j ¼ 1; 2…:m; and Lj‘s and Uj‘s = lower and upper limits on
the m implicit constraints, respectively. They are either constants or
functions of the n independent variables. The implicit constraints
are allowed to make the feasible vector-space nonconvex.

Additionally, the optimization may also be subject to k numbers
of equality constraints of the form

hjðxÞ ¼ 0 where j ¼ 1; 2…; k ð30Þ

Functions hjðxÞ are also of arbitrary complexity of n indepen-
dent variables ðx1; x2;……:; xnÞ. The procedure is unable to
directly deal with the previous form of equality constraints. It, how-
ever, can indirectly handle such equality constraints by defining an
augmented objective function

Fðx;λÞ ¼ f 0ðxÞ þ ΣλjhjðxÞ ð31Þ

where j ¼ 1;………; k; and λj‘s = unknown weighting factors such
that all hjðxÞ vanish at the minimum of Fðx;λÞ.

In the literature, λj‘s are known as Lagrange multipliers.
The previous problem needs to be presented to the subroutine

EVOP as follows:

MinimizeFðx;λÞ ¼ f 0ðxÞ þ ΣλjhjðxÞ where j ¼ 1;………:; k

ð32Þ
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Subject to explicit constraints li ≤ xi ≤ uii ¼ 1;………:; n Eq. (28)
repeated

and 0 ≤ λj ≤ any positive number j ¼ 1;………:; k ð33Þ
and an additional set of k numbers of implicit constraints

0 ≤ hjðxÞ ≤ any positive number greater than hjðx0Þ ð34Þ
where x0 = starting point.

If the numerical value of hjðxÞ is negative, then either negate
hjðxÞ to make it positive or just square it.

Procedure

The method is subdivided into six fundamental processes, which
are described in Ghani (1989). They are, (1) generation of a com-
plex, (2) selection of a complex vertex for penalization, (3) testing
for collapse of a complex, (4) dealing with a collapsed complex,
(5) movement of a complex, and (6) convergence tests (Fig. 5).

A complex is a living object spanning an n-dimensional para-
meter space defined by k ≥ ðnþ 1Þ vertices inside the feasible

region. It has the intelligence to move toward a minimum located
on the boundary or inside the allowed space. It can rapidly change
its shape and size for negotiating difficult terrain. Fig. 6 shows a
complex with four vertices in a two-dimensional parameter space.
The complex vertices are identified by lower case letters ‘a’, ‘b’, ‘c’
and ‘d’ in an ascending order of function values, i.e., f ðaÞ <
f ðbÞ < f ðcÞ < f ðdÞ. A straight line parallel to the coordinate axes
are explicit constraints with fixed upper and lower limits. The curved
lines represent implicit constraints set to either upper or lower limits.
The hatched area is the two-dimensional feasible search spaces.

Generating a Feasible Starting Point

Generating a feasible starting point is simple. Before calling sub-
routine EVOP, a random point satisfying all explicit constraints is
generated in one step by using Eq. (28). The coordinates of this
random point is given by:

xi ¼ li þ riðui � liÞ where ði ¼ 1; 2…nÞ ð35Þ
where ri = pseudorandom deviate of rectangular distribution over
the interval (0,1).

For this to be possible, the problem has to be so defined that all
explicit constraints have constant upper and lower bounds. Those
explicit constraints having variable upper or lower bounds are shifted
from the list of explicit constraints and included within the set of
implicit constraints. Satisfaction of all implicit constraints is next
ascertained, and if any violation is detecte this randomly generated
point is rejected and another test point satisfying all explicit con-
straints is created as discussed previously. Once again satisfaction
of all implicit constraints is verified. When a test point is found that
has succeeded in satisfying all explicit and implicit constraints, sub-
routine EVOP is called and the results of optimization scrutinized.

Case Study

In this section, an example is provided to demonstrate the practical
application of the approach presented in this paper. Present method
is applied to a real-life bridge project. The bridge, 750-m long and
12.11-m wide, is to be built in the northern part of Bangladesh. The
optimum design obtained here is compared with the existing design
of the project. The bridge is a prestressed concrete I girder bridge of
medium span (50 m) made composite with cast-in situ deck slab
(BRTC 2007). The constant design parameters used are summa-
rized in Table 4. The cost data for materials, labor, fabrication,
and installation used for the optimum design are identical to that
for the existing design, as obtained from the Roads and Highway
Department cost schedule (RHD 2006). Comparative values of the
design variables, cost of the existing design, and the cost of the
optimized design are presented in Table 5. The cross sections show-
ing the design variables corresponding to the existing design and
the optimum design of the bridge are given in Figs. 7 and 8, respec-
tively. In Table 5, the minimum cost design produces an optimal
I-girder bridge system configuration that would be 35% more eco-
nomical than the existing design. There are significant differences
in almost all of the design variables between the two. Girder spac-
ing is greater in the optimum design, resulting in a lesser number of
girders for the best design than the existing design (Figs. 7 and 8).
In the most economical design, the girder depth, top flange width,
bottom flange thickness, and slab thickness, are comparatively big-
ger and the top flange thickness, bottom flange width, web width,
prestressing steel, and deck slab reinforcement are smaller than the
existing design. Arrangements of tendons of the existing design and
the optimum design are shown in Figs. 9 and 10, respectively. In the

No No
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Testing for collapse of a 
'complex', and dealing with 
a collapsed 'complex'

Convergence test

Movement of a 'complex'

Generation of a 'complex'

Selection of a 'complex' 
vertex for penalization
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Vertex 
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Limit of 
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exceed?
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Fig. 5. General outline of EVOP Algorithm

Fig. 6. A complex with four vertices
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optimum design, tendon arrangement is steeper than that of the
existing design. This indicates that consideration of tendon arrange-
ment as a design variable is important because it affects, to a great
extent, the prestress losses and flexural stress at various sections
along the girder. Web reinforcement of the girder is also less in the
optimum design than that of the existing design (Figs. 11 and 12).
The optimization problem with 14 mixed type design variables and
46 implicit constraints converges with just 32 numbers of objective
function evaluations with 3 digit accuracy. The corresponding
numbers of explicit and implicit constraints evaluations are 256 and
171, respectively. An Intel COREi3 processor has been used in this
study, and computational time required for optimization by EVOP
is around only 2 s. Further, the design process becomes fully auto-
mated, making costly expert human involvement unnecessary.

Parametric Study

The present cost optimum design method has been applied for 3
lane and 4 lane bridges of a 50 m girder span. The AASHTO

Table 4. Constant Design Parameters

Cost data Material properties Bridge design data

UPGC ¼ $180 per m3 f pu ¼ 1;861 MPa Girder length ¼ 50 m (L ¼ 48:8 m)

UPGF ¼ $5 per m2 f y ¼ 410 MPa Bridge width, BW ¼ 12:0 m (3 lane)

UPDC ¼ $85 per m3 f 0c ¼ 40 MPa Live load = HS20-44 (both truck loading and lane loading)

UPDF ¼ $4:5 per m2 f 0cd ¼ 25 MPa No of diaphragm ¼ 4; diaphragm width ¼ 250 mm

UPPS ¼ $1;285 per t f 0ci ¼ 30 MPa Wearing surface ¼ 50 mm

UPANC ¼ $65 per set K ¼ 0:005=m Curb height ¼ 600 mm; curb width ¼ 450 mm

UPSH ¼ $1:3 per linear m μ ¼ 0:25 7 wire low-relaxation strand

UPOS ¼ $640 per t δ ¼ 6 mm Freyssinet anchorage system

Note: f 0cd = compressive strength of slab concrete.

Table 5. Existing Design and Cost Optimum Design

Design Variables Existing
design

Optimum
design

Girder spacing (S) (m) 2.4 3.0

Girder depth (Gd) (mm) 2,500 2,700

Top flange width (TFw) (mm) 1,060 1,250

Top flange thickness (TFt) (mm) 130 75

Top flange transition thickness (mm) 75 50

Web width (Ww) (mm) 220 150

Bottom flange width (BFw) (mm) 710 360

Bottom flange thickness (BFt) (mm) 200 250

Number of strands per tendon (Ns) 12 (0.5″dia) 8 (0.6″dia)
Number of tendons per girder (NT ) 7 6

Lowest tendon position (y1) 400 930

Initial stage prestress (η) 42.8% 53%

Slab thickness (t) (mm) 187.5 210

Slab main reinforcement ratio (ρ) 0.82% 0.63%

Other cross-sectional parameters Existing

design

Optimum

design

Top flange transition width (mm) 270 500

Top flange haunch width (mm) 150 50

Top flange haunch thickness (mm) 150 50

Bottom flange transition width (mm) 245 105

Bottom flange transition thickness (mm) 250 52.5

Total cost per square meter of deck ($) 175 113

%SAVING ¼ ½ð175� 113Þ=175 × 100� 35.0%
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Fig. 7. The existing design (dimensions are in millimeters)
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Fig. 8. The optimum design obtained in this study (dimensions are in
millimeters)
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HS20-44 live load (both truck loading and lane loading) with super-
imposed dead loads, as per AASHTO (2002), has been considered
for each case. The optimum design is sensitive to the design con-
stant parameters i.e., unit cost of materials, labor, fabrication and
installation, concrete strength, strand size, and anchorage system.
Different design constant parameters result in different optimum
designs. The effect of two girder concrete strengths i.e., 40 and
50 MPa (28 days) are studied. Three different regimes of unit costs
of the materials, as shown in Table 6, are considered so that the

variation in design with cost can be observed. Concrete strength
at the initial stage is taken as 75% of 28 days strength. Deck slab
concrete strength is considered 25 MPa. Ultimate strength of
prestressing steel and yield strength of ordinary steel are considered
1,861 and 410 MPa, respectively. The Freyssinet C-Range anchor-
age system is used for post-tensioning tendons consisting of
15.2-mm diameter 7-wire strands. The unit cost of girder concrete
and deck slab concrete are considered fixed. The unit costs of steel
and anchorage systems arevaried such that inCost 2, the cost is twice
those in Cost 1, and in Cost 3, the cost is three times those in Cost 1.

From the cost optimum design study for the present bridge
system, the following observations are made:
1. Optimum girder spacing for a 3 lane bridge is 3 m for both

concrete strengths and for a 4 lane bridge is 3.2 m for all
the cases, irrespective of the difference in costs of materials
(Tables 7–9). Optimum girder depth for Cost 1 is 2,540 mm
(3 lanes) and 2,640 mm (4 lanes) for 50 MPa concrete strength
and 2,700 mm (3 lanes) for 40 MPa concrete strength. Girder
depth increases with the increase of the cost of steel in both
cases, which indicates that the relative cost difference of
materials influences the optimum design of bridge.

2. Because of composite construction, deck slab thickness is
usually adequate to satisfy the compression area required
for flexural strength of the girder. The top flange width is con-
trolled by the effective span of the deck slab to satisfy the ser-
viceability criteria of the deck and lateral stability effects of the
girder. Top flange width increases in Cost 2 but does not in-
crease for Cost 3. Optimum top flange width is in between
1,050 to 1,200 mm in the case of concrete strength of 50 MPa
and 1,100 to 1,400 mm in the case of concrete strength of
40 MPa. This indicates that the wider top flange reduces
the formwork cost of the deck slab and increases the safety
factor against lateral stability. The optimum top flange thick-
ness and top flange transition thickness, however, stick to their
lower limit.

3. The optimum bottom flange width is approximately 370 mm
for both concrete strengths, which is close to its lower limit.
This indicates that it is not necessary to have a large bottom
flange width to accommodate all the tendons in the lowermost
position to have greater eccentricity. Thus, the bottom flange
transition area is minimized to keep the concrete area smaller.
Bottom flange thickness the increases a little with the increase
in the cost of steel for Cost 2 but decreases for Cost 3.

4. Optimum web width in all the three cases is 150 mm, and the
number of strands per tendon is 8 or 9 for both concrete
strengths. This indicates that the C-Range anchorage
system, which accommodates 9 tendons, is the optimum value
(Tables 7 and 8) for the range of variables considered here. The
number of tendons required decreases with the increase in the
cost of steel.

5. With an increasing steel cost, the deck slab thickness increases
only a little because larger thickness induces a greater dead
load. Therefore, the optimum value of deck slab thickness
is 210 to 220 mm, irrespective of the rise in steel cost. How-
ever, the reinforcement ratio of the deck decreases with an
escalating steel price.

6. The percentage of steel to be prestressed at initial stage in-
creases with an increase in steel cost. This indicates that as
steel cost increases, the girder weight also increases, requiring
more prestress at the initial stage. In this study, the variable
tendon arrangement along the girder is considered. Vertical
positions of tendons at various sections are shown in Table 10.
With the increase in the cost of steel, the tendons are arranged
in the girder such that vertical distances of tendons decrease

Fig. 9. Tendon profile in the existing design

Fig. 10. Tendon profile in the optimum design

C L

End
Block

7.6 m 9.6 m 4.8 m

25 m
12 mm dia @ 125 mm 12 mm dia @ 150 mm 12 mm dia @ 200 mm

Fig. 11. Web reinforcement of girder in the existing design

12 mm dia @ 610 mm 12 mm dia @ 610 mm 12 mm dia @ 610 mm

CL

End
Block

7.43 m 7.43 m 7.43 m

25 m

Fig. 12. Web reinforcement of girder in the optimum design
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from the bottom of the girder, resulting in an increase of
eccentricity (Table 10).

7. With a two-fold increase in the unit cost of steel, for the case of
concrete strength of 50 MPa, the optimized cost of girder de-
creases by $7:00 per m2 of deck slab area, resulting in a 4%
savings in cost. When the cost of steel increases by three times,
the optimized cost of the girder decreases by $16:00 per m2 of
deck slab, ensuing around 8% savings. For 40Mpa, the savings
are approximately 4.5% for Cost 2 and 10% for Cost 3
(Table 11).

8. The most active constraints governing the optimum design are
compressive stress at the top fiber of the girder for permanent

dead load at the service condition, tensile stress at bottom fiber
attributed to all loads, prestress force at the end of seating loss
zone, deck thickness, factors of safety against lateral stability,
and deflection at the service condition attributed to a full load
in most of the three cases. As the amount of prestressing
of steel decreases with increasing cost of steel, the flexural
strength of the composite girder becomes an important
constraint.

9. Control parameters used and computational effort required by
EVOP are tabulated in Table 12. It shows that the optimization
problem with a large number of mixed type design variables
and implicit constraints converges with a rather small number

Table 6. Cost Regimes Used for Cost Minimum Design

Item Unit
Cost 1 ($)

(C1)
Cost 2 ($)

(C2)
Cost 3 ($)

(C3)

Precast girder concrete-including equipment and labor (UPGC) per m3 (50 MPa) 250 250 250

per m3 (40 MPa) 180 180 180

Girder formwork (UPGF) per m2 5 5 5

Cast-in-place deck concrete (UPDC) per m3 85 85 85

Deck formwork-equipment and labor (UPDF) per m2 4.5 4.5 4.5

Girder post-tensioning-tendon, equipment, and labor (UPPS) per ton 1,285 2,570 3,850

Anchorage set (UPANC) per set 65 130 195

Metal sheath for duct (UPSH) per linear meter 1.3 2.6 3.9

Mild steel reinforcement for deck and web in girder (UPOS) per ton 640 1,280 1,920

Table 7. Optimum Values of Design Variables for 3 Lane 50-m Girder and Concrete Strength ¼ 50 MPa

Cost S (m) Gd (mm) TFw (mm) TFt (mm) TFSt (mm) BFw (mm) BFt (mm) Ww (mm) NS NT t (mm) ρ% y1 (mm) η%

C1 3.0 2,540 1,050 75 50 375 215 150 9 6 215 0.62 770 53

C2 3.0 2,780 1,175 75 50 370 250 150 9 5 215 0.59 890 66

C3 3.0 3,100 1,075 75 50 365 180 150 8 5 220 0.57 760 70

Table 8. Optimum Values of Design Variables for 3 Lane 50-m Girder and Concrete Strength ¼ 40 MPa

Cost S (m) Gd (mm) TFw (mm) TFt (mm) TFSt (mm) BFw (mm) BFt (mm) Ww (mm) NS NT t (mm) ρ% y1 (mm) η%

C1 3.0 2,700 1,250 75 50 360 250 150 8 6 210 0.63 930 53

C2 3.0 3,020 1,375 75 50 380 280 150 8 5 215 0.57 830 56

C3 3.0 3,460 1,125 75 50 320 165 150 9 4 220 0.55 895 70

Table 9. Values of Design Variables for 4 Lane 50-m Girder and Concrete Strength ¼ 50 MPa

S (m) Gd (mm) TFw (mm) TFt (mm) TFSt (mm) BFw (mm) BFt (mm) Ww (mm) NS NT t (mm) ρ% y1 (mm) η% TC* ($)

C1 3.2 2,640 1,050 75 50 365 250 150 9 6 215 0.82 843 43 127

C2 3.2 2,800 1,150 75 50 380 200 150 9 5 220 0.63 707 47 170

C3 3.2 2,970 1,175 75 50 380 230 150 9 5 230 0.56 950 48 211

Table 10. Center of Gravity of Tendons from Bottom Fiber of Girder in the Optimum Design

Girder concrete strength ¼ 50 MPa Girder concrete strength ¼ 40 MPa

Y1 Y2 Y3 Yend AS Y1 Y2 Y3 Yend AS

C1 127 440 1,010 1,366 235 127 510 1,152 1,600 268

C2 116 433 973 1,363 238 116 428 930 1,345 256

C3 116 384 819 1,190 213 127 455 923 1,412 346

Note: AS = anchorage spacing.
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of function evaluations. It may be useful to compare the pre-
vious figures with many staff-hours of effort by highly skilled
engineering staff power needed for manual iterations.

Conclusions and Recommendations

The most economical design of a simply supported post-tensioned
prestressed concrete I-girder bridge system is presented. A global
optimization algorithm, EVOP, is used in this study. It is capable of
locating directly with high probability the global minimum of an
objective function of several variables and of arbitrary complexity,
subject to explicit and implicit constraints. A digital computer pro-
gram is developed that may be useful to designers and contractors
interested in cost optimization of the I-girder bridge system. The
influence of constant design parameters, such as unit costs of
materials and concrete strength on the optimum design, is studied.
The proposed cost optimum design approach is applied to a real-life
project and shows considerable (35%) savings in cost, while com-
puting a feasible and acceptable optimum design. Conclusions
from this study are listed subsequently.

For all the cases studied, the optimum girder spacing remains
identical to 3 m for a 3 lane bridge and 3.2 m for a 4 lane bridge.
The optimum girder depth the increases with the increase in the cost
of steel. Optimum top flange width is controlled by the effective
deck slab span and lateral stability effects of the girder. Optimum
top flange thickness and top flange transition thickness are equal to
their lower limits. Optimum bottom flange width remains close to
the lower limit. Optimum web width remains nearly constant, irre-
spective of girder span and concrete strength. The optimum number
of strands per tendon is 8 or 9 for 40 and 50MPa concrete strengths.
With the increase in steel cost, deck thickness does not increase
comparatively and remains within 210 to 220 mm.

The relative cost difference of materials influences the optimum
design of a bridge. For example, the cost optimum design when
performed for a different relative cost of materials resulted in a
new optimum design that saved 4 to 10% more of the overall cost
of the bridge than the original design. The optimum cost of the
bridge per square meter of the deck remained almost the same,
irrespective of the number of the lanes.

It is difficult to solve the present constrained global optimization
problem of 14 numbers of mixed integers, discrete and continuous
design variables, and a large number of implicit constraints by us-
ing gradient based techniques. Such a problem can, however, be

easily dealt by EVOP with a relatively small number of function
evaluations.

It is recommended that the optimization study be further ex-
tended for a continuous I-Girder bridge system or other types of
bridge systems considering both superstructure and substructure
and also for high strength concrete (HSC) girders. It will be also
interesting to conduct such studies for modern synthetic materials,
such as plastic composites. Smart materials for structures that can
self repair (Yachuan and Jinping 2008) are gradually appearing on
the scene. Applicability and economics of such advanced material
for bridge construction may also be investigated. So far, we have
discussed the optimization of a single or scalar objective function—
the cost of the bridge. It is our intention to extend this work to cover
multiple or vector objective functions.

The bottom line of this work is that in today’s highly competi-
tive world, diligence is simply not good enough for survival; one
has to perform intelligently and through optimization.
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