Imperial College of Science and Technology Department of Electrical Engineering

DESIGN	OF	TMPULSE-COITIUTATED				THYRISTOR	
INVERTO	RS	AND	CAI	ULATION	OR	IND	SCIION
MOTOR	PERI	ORMA	NGE	UNDER	VARI	BLE	SPEED

OPERATION

$$
\begin{gathered}
\text { Thesis submitted for the degree of } \\
\text { Doctor of Philosophy in Engineering } \\
\text { oy }
\end{gathered}
$$

Sayeed Jurul Ghani

ABSTRACT

This thesis describes the design of a three-phase variable-frequency thyristor invertor with single D.Cside impulse commutation, and the measurement and prediction of the performance of an invertor-fed induction motor. The motor performances when invertor fed and when fed from a sinusoidal source are compared.

The circuit configuration of the invertor is well known, but equations allowing design and parameter optimization have not been previously published. Such equations are derived and given in normalized form. The step-by-step design of an invertor according to a given specification is included.

Conventional no-load and locked-rotor tests were performed to enable evaluation of the induction motor equivalent circuit parameters which were used to predict the performance of the invertor-fed motor. The parameters were checked by performing load test with a variable-frequency sinusoidal excitation.

The induction motor losses under fixed-frequency sinusoidal ecitation, calculated by known methods, are discussed, and extended to include the effects of airgap space harmonics on motor performance.

A known modification to the fixed-frequency
conventional equivalent circuit enabling prediction of motor performance under variable-frequency fixed maximum torque operation, is given.

Because no prediction method for the motor performance including the effect of space harmonics under conditions of variable-frequency sinusoidal excitation had been published, the known variable frequency equivalent circuit was extended to account for space harmonics.

This equivalent circuit was further extended to include the effects of the time harmonics of the invertor supply. The effect of the invertor supply on the main flux path iron loss of the machine is also examined.

An original analysis, in the time domain, of the invertor-fed machine was carried out and the results are used for the invertor design.

ACKNOWLEDGMENTS

The investigation described in this thesis was carried out under the supervision of Mr. B.J. Cory, B.Sc. (Eng.), A.C.G.I., C. Eng., I.I.E.E., Senior Lecturer in Electrical Engineering, Imperial College of Science and Technology, Iondon, S.W.7, and the author gratefully acknowledges his encouragement and guidance.

The author also expresses his gratitude to Mr. D.A.G. Pedder, M.Sc. (Eng.), D.I.C., C. Eng., M.I.EE., for useful discussions and suggestions.

The author is very much indebted to the Kingston College of Technology, Kingston-upon-Thames, and especially to Mr. R.H. Ness, B.E.M. B.Sc. (Eng.), C. Eng., M.I.E.E., Head of the Department of Electrical Engineering for his encouragement and for allowing time for the preparation of this thesis.

Finally, the financial help given by The Burmah Oil Company is gratefully acknowledged.

INDEX

Abstract 2
Acknowledgments 4
Index 5
List of Symbols 14
CHAPTER 1 : INTRODUCTION 31
1.1. Basic electro-magnetic principles behind variable speed drives 31
1.2. Methods of speed control 32
1.2.1. Control of speed by variation of active voltage induced in a rotor winding 32
1.2.2. Variable speed drive by field flux control 38
1.2.3. Speed control through change of rotational speed of stator field 42
1.3. The object of the investigation and the layout of the thesis 50
CHAPTER 2 : THE INVERTOR 52
2.1. Single D.C. side impulse commutated invertor 52
2.2. Operation of the invertor 54
2.3. Analysis of commutation circuit 58
2.3.1. Bridge thyristor reverse bias time 63
2.3.2. Total commutation time t_{c} 67
2.3.3. Commutation circuit inductance and capacitance 68
2.3.4. Energy loss in the commutating line chokes 69
2.3.5. Peak flux-linkage of commutation chokes 70
2.3.6. Commutating thyristor $i^{2} t_{c}$ rating 71
2.3.7. R.M.S. current o commatation thyristor 73
2.3.8. Average current of commutation thyristor 74
2.3.9. Power rating of auxiliary commutating supply 75
2.3.10 Commatation power supplied by the main D.C. supply 76
2.3.11 D.C. line clamping diode average current 77
2.4. Choice of commutation circuit parameter 77
2.4.1. Optimization for minimum commatation energy 78
2.4.2. Minimization of commutation choke flux-linkage 84
2.4.3. Choice of design variables 872.5. Capacity of supply reservoircapacitors88
CHAPTER 3 : INVERTOR DESIGN 91
3.1. Specifications 92
3.2. Design of commutation circuit
3.2.1. Choice of the main supply voltage 92
3.2.2. Choice of auxiliary supply voltage 95
3.2.3. Commutation efficiency 97
3.2.4. Choice of inductance of D.C. line chokes 97
3.2.5. Choice of commutating capacity 98
3.2.6. Choice of capacity of supply reservoir capacitors 99
3.2.7. Total commutation time 101
3.2.8. Bridge thyristor reverse bias time 102
3.2.9. Choice of commutating thyristors 103
3.2.10 Choice of D.C. line diodes 105
3.3. Design of thyristor bridge 106
3.3.1. Voltage ratings of bridge 106 thyristors
3.3.2. Current rating of bridge thyristors 107
3.4. Design of diode bridge 109
3.4.1. Voltage rating of bridge diodes 109
3.4.2. Current rating cf bridge diodes 111
3.5. Protection of invertor 113
3.5.1. Transient over-voltage protection 113
3.5.2. Over-current protection 114
CHAPTER 4 : THE INDUCTION MOTOR ATD EXPERIMENTAL DETERMINATI ON OF EQUIVALENT OIRCUIT PARAMEIERS118
4.1. Design details of the induction motor 118
4.2. Conventional constant frequency equivalent circuit 119
4.3. Variable frequency no-load test 122
4.4. Variable frequency locked rotor test 133
CHAPTER 5 : INDUCTION MOTOR LOSSES UNDER FIXED AND VARIABLE FREQUENCY SINUSOIDAL SUPPLY 142
5.1. Iosses due to main flux 145
5.1.1. Hysteresis loss 145
5.1.2. Eddy-current loss 150
5.2. Stator copper loss 153
5.3. Rotor copper loss 153
5.3.1. Field harmonics in the airgap of induction motor 155
5.3.2. Extension of conventional fixedfrequency equivalent circuit toinclude the effects of spaceharmonics163
5.4. Losses due to slot openings 1705.5. Variable frequency equivalentcircuit accounting for spacefundamental mmf only173

6.4. Performance calculations for time harmonics and space fundamental mmf. 2186.5. Equivalent circuit representingthe contribution of time harmonicson motor performance taking intoaccount the fundamental and higherspace harmonics223
6.6. Performance calculations takinginto account the time fundamontaland time harmonics of supply andspace fundamental and spaceharmonics of machine air-gap mmf223
CHAPTER 7 : TIME DOMAIN ANALYSIS OF INVERTOR-FED INDUCTION MOTOR 235
7.1. Assumptions 236
7.2. Representation of machine and machine equations 257
7.2.1. Representation of machine alongthe three-phase spatial rotor andstator holonomic reference frame(* frame; RYB and ryb)237
7.2.2. Representation of machine along stator DQO and rotor dqo axes (x^{r} frame) 238
7.2.3. Representation of machine along non-holonomic forward and backward revolving $F B O$ and fbo axes (" a." frame) 2.40
7.3. Elimination of rotor axes 250
7.4. Evaluation of stator and rotor current along sel frame 258
7.5. The differential equations for currents 263
7.6. Evaluation of electro-magnetic torque 260
7.7. Generalization of the differential equations given stator and rotor sequence currents 270
7.8. Effect of stator connection (star or delta) on iron loss due to main flux 276
CHAPTER 8 : INDUCTION MOTOR LOAD TESTS 285
8.1. Windage and friction loss of the induction and D.C. loading motor 235
8.2. Variable frequency load test under sinusoidal excitation 236
8.2.1. Variation of stator current with slip for various constant values of supply frequency 250
8.2.2. Electro-magnetic power output 291
8.2.3. Blectro-magnctic torque developed 293
8.2.4. Electric power input 296
8.2.5. Total electro-magnetic loss 295
8.2.6. Electro-magnetic efficiency 500
8.3. Variable frequency load test under invertor operation 300
8.3.1. Variation of stator current with slip for various constant values of supply frequency 303
8.3.2. Electro-magnetic torque developed 304
8.3.3. Electro-magnetic power output 338
8.3.4. Electric power input 338
8.3.5. Total electro-magnetic loss 344
8.3.6. Electro-magnetic efficiency 350
CHAPTER 9 : GPNERAI COHCLUSIONS AITD DISCUSSIOITS 351
9:i. Applicability of the Invertor Design Equations to Other Types of Impulse-commutated Invertors 351
9.2. Perforimance Prediction and Measurement of the Motor when excited from sinusoidal source 354
9.3. Performance Prediction and Measurement of Invertor-fed Induction Motor 357
9.4. Torque FIuctuation of Invertor- fed Induction Motor 364
9.5. Bridge Thyristor and Bridge Diode Conduction Angle 365
9.6. Bridge Thyristor and Bridge Diode Peals Current 365
9.7. Considerations of Design for - Invertor-ied Induction Motors 366
9.8. Further Discussions 367
9.9. Further Work 369
9.10. Final Summary 370
APPENDIX I : SOLUTION OR THE HACHINE DIFFERENTIAL EOUATI ON 373
AI.I. Response due to direct axis excitation only 373
AI.2. Response due to quadrature axis excitation only 381
APPENDIX II : HARMONTC ANALYSIS OR TDEALIZED 384
AII.I. Line to line voltage 384
AII.2. Line to neutral voltage 386
AII.3. R.M.S. value of the idealized line to line voltage in terms of its step height 388
AII.4. R.ins. value of the idealized line to line voltage in terms of the r.in.s. value of its time fundamental 388
AII.5. Average value of the idealized invertor line to line voltage in terms of its step height 389
AII.6. Form factor of idealized invertor line to line voltage 389
AII.7. R. ${ }^{\text {I }} . S$. value of invertor idealized line to neutral voltage in terms of line to line voltage step 389
AII.3. R.M.S. value of invertor idealized.line to neutral voltage in terms ofits time fundamental R. $\mathbb{M} . S$. value390
AII.9. Average value of invertor idealized line to neutral voltage in terms of idealized line to line voltage step 390
AII. 10. Forn factor of idealized invertor line to neutral output voltage. 391

SYMBOLS

Symbols are listed as they appear in the text.

CHAPTER 2

$\begin{aligned} & \mathrm{Th}_{1}, \mathrm{Th}_{2}, \mathrm{Th}_{3} \cdots \cdot \\ & \mathrm{Th}_{7} \text { and } \mathrm{Th}_{8} \end{aligned}$	are the six bridge thyristors are the two commutation thyristors
$D_{1}, D_{2}, D_{3} \ldots D_{6}$	are the six bridge diodes
D_{7} and D_{8}	are the two D.C. line diodes
I_{1} and L_{2}	are the two D.C. line chokes
C_{A} and C_{B}	are the two main supply reservoir capacitors
${ }^{C} C_{C}$ and C_{D}	are the two auxiliary supply reservoir capacitors
C_{3}	is the commutating capacitor
V_{1}	is the main D.C. supply voltage
V_{2}	is the auxiliary D.C. supply voltage
I_{0}	is the current flowing in the thyristor bridge at the instant of commutation
t_{0}	is the bridge thyristor reverse bias time
t_{c}	is the total commatation time
I_{p}	is the peak current attained in the D.C. line chokes during commutation
r_{1} and r_{2}	are the resistance of the D.C. line chokes

is the natural angular frequency of the commutation cireuit
is the damping constant of the commutation circuit
is the damped angular frequency of the invertor at the instant of commutation
are the two commutation circuit time constants
are the invortor commutation circuit independent variables
instantaneous voltage across the commutation capacitor
instantancous voltage of point X with respect to neutral n
bridge thyristor reverse bias time function
commutation energy loss function
D.C. line choke peak flux linkage function
D.C. Iine choke inductance function commutating capacity function commutating thyristor $i^{2} t$ function r.m.s. value of commutating thyristor current
frequency of invertor output voltage commutating thyristor rim.s. current
function function
$C_{I_{A V}}$
$f_{8}(x, k)$
$P_{C A}$
$f_{9}(x, k)$
$P_{C M}$
$f_{I O}(x, k)$
$D_{I_{A V}}$
$f_{I I}(x, k)$
Q_{C}
$\frac{\Delta V}{V}$
average value of conimitating thyristor current
commutating thyristor average current function
auxiliary D.C. supply power rating
auxiliary D.C. supply power function commutation power supplied by the mair D.C. supply
main D.C. supply commatation power function
average current of D.C. line clamping diodes
D.C. line diode average current function
charge delivered by the supply reservoir capacitors during commutation
allowable D.C. supply per unit variation during commutation

CHAPTER 3
$\mathrm{I}_{\mathrm{V}_{\text {INV }}}$
$\mathrm{I}_{\mathrm{V}_{1}}$ IMINS
$\mathrm{P}_{\text {MAIN }}$
THIVV
7 M
the amplitude of idealized linc to line invertor output voltage
r.m.s. value of time fundamental component of line to line invertor output voltage
main D.O. supply power rating
invertor efficiency
induction motor efficiency

CHAPTER 4

V_{f}	sinusoidal stator line to neutral supply voltage of frequency f
$\mathrm{R}_{\text {I }}$	stator resistance
R_{2}	rotor resistance
$\mathrm{X}_{\text {If }}$	stator leakage roactance at frequency f
$\mathrm{X}_{2 f}$	rotor leakage reactance at frequency f
X_{Mf}	magnetizing reactance at frequency f
$\mathrm{R}_{\text {M } f}$	main flux path iron loss simulating resistance at frequency f
$E_{g f}$	air-gap voltage at frequency f
S	slip of rotor
P	number of poles
$N_{\mathrm{P}_{i n}}$	stator power input under no load condition (at zero rotor slip)
$\mathrm{I}_{\text {NL }}$	no load stator input current (zero rotor slip)
$\mathrm{P}_{\mathrm{h}: \mathrm{e}}$	hysteresis and eddy current loss in main flux path
$\emptyset_{N L}$	no load (zero rotor slip) input power factor angle
V_{bl}	locked rotor stator line to neutral voltage at frequency f
I_{bI}	locked rotor stator input current at frequency f

$\mathrm{R}_{\mathrm{blf}}$	locked rotor input resistance at frequency f
$X_{\text {blf }}$	locked rotor input mnotance at frequency f
$P_{b 1}$	- locked rotor input power
$z_{\text {blf }}$	locked rotor input impedance at frequency f
11	stator leakage inductance
I_{2}	rotor leakage inductance
$\mathrm{I}_{\text {M }}$	magnetizing inductance
N_{S}	synchronous speed in R.P.I.

CHAPTER 5

W_{h}	hysteresis loss
$t^{4}, \mathrm{a}, \mathrm{b}$	hysteresis loss coefficients
n	hysteresis loss exponent
B_{m}	flux density
4	area of flux path
R_{h}	hystercsis loss simulating resistance
ϕ_{m}	peak value of main flux
K_{f}	form factor of air-gap voltage
N_{1}	number of stator twins per phase
Kw_{1}	stator winding factor for space fundamental air-gap mmf
$R_{h 50}$	hysteresis loss simulating resistance at 50 Hz

W_{150}	hysteresis loss at 50 Hz
V_{c}	eddy current loss in main flux path
Pe	resistivity of the material in which cddy current flows
δ	thickness of Iaminations
R_{c}	eddy current loss simulating resistance
We50	eddy current loss in main flux path at 50 Hz
F_{1}	amplitude of space fundamental mmf
K_{dl}	winding distribution coefficient for space fundamental mmf
q_{1}	number of stator slots per pole per phase
K_{yI}	winding pitch factor coefficiont for space fundamental mmf
y	winding pitch expressed as a fraction of full pitch
T	space fundamental pole pitch
2	order of stator spacc harmonic
$\mathrm{K}_{1}, \mathrm{~K}_{2}$	any positive integer including zero
$\mathrm{K}_{1 z}, \mathrm{~K}_{2 z}$	any positive integer excluding zero
ν_{z}	order of slot harmonics
S_{1}	stator slots
\%	order of belt harmonics
$\mathrm{K}_{\mathrm{W} \dot{2}_{\mathrm{b}}}$	winding distribution factor for $b_{b}^{\text {th }}$ space harmonic

$\mathrm{K}_{\mathrm{y},}{ }_{b}$	winding pitch factor for $\nu_{b}^{\text {th }}$ space harmonic
$\mathrm{K}_{\mathrm{d} \dot{x}_{z}}$	winding distribution factor for $\nu_{z}^{\text {th }}$ space harmonic
$\mathrm{K}_{\mathrm{y} \nu_{\mathrm{z}}}$	winding pitch factor for $\nu_{z}^{\text {th }}$ space harmonic
-im	order of rotor mmf space harmonics
q_{2}	number of rotor slots per pole per phase
S_{2}	total number of rotor slots
5.	slip of rotor with respect to $2^{\text {th }}$ stator ficld harmonic
R_{M}	core loss analogue resistance at normal supply frequency
$\mathrm{X}_{\mathrm{M} \mathrm{\nu}}$	magnetising reactance due to $y^{\text {th }}$ space harmonic at normal supply frequency
$\mathrm{R}_{2 \nu}, \mathrm{X}_{2 \nu}$	rotor resistance and leakage reactance corresponding to $y^{\text {th }}$ space harmonic at normal supply irequency
$\mathrm{X}_{\mathrm{M}} \dot{\nu}_{b}$	```magnetising reactance corresponding % th belt harmonic at normal supply frequency```
$X_{P I} y_{z}$	magnetizing reactance corresponding to $\gamma_{z}^{\text {th }}$ slot harmonic at normal supply frequency
p_{s}	half the amplitude of air-gap permeance variation
p_{0}	average value of air-gap pormeance variation

$\mathrm{X}_{2 \mathrm{~d} \nu}$	```differential harmonic leakage corresponding to }\mp@subsup{\nu}{}{\mathrm{ th }}\mathrm{ spaco harmonic at normal supply frequency```
$\mathrm{K}_{\text {sdl }}$	a correction factor
$\mathrm{X}_{\text {sk }}$ ע	skew leakage reactance for $\nu^{\text {th }}$ space harmonic
$\begin{aligned} & \mathrm{K}_{\text {sk } \nu} \\ & T^{\prime} \end{aligned}$	skew factor for $\nu^{\text {th }}$ space harmonic pitch of the fundamental poles in terms of rotor slots
c^{\prime}	pitch of rotor slots with respect to stator slots
$\mathrm{R}_{2 \nu}$	rotor resistance for $\nu^{\text {th }}$ space harmonic referred to stator
$\mathrm{R}_{2 \boldsymbol{\nu}}$	rotor resistance for $\chi_{b}^{\text {th }}$ belt harmonic referred to stator
$\mathrm{R}_{2 \nu_{z}}$	rotor resistance for $\nu^{\text {th }}$ slot harmonic referred to stator
$\mathrm{X}_{2 \mathrm{Sf}}$	stator referred rotor leakage reactance at slip frequency sf
E_{gn}	air-gap voltage at any nowmal frequency fn
$\mathrm{E}_{2 S f}$	stator referred rotor induce voltage of slip frequency sf
I_{1}	stator current
I_{2}	rotor current referred to stator
I_{m}	magnetizing current ratio of any frequency to normal frequency

Z_{1}	stator leakage impedance
Z_{2}	stator reforred rotor leakage impedance
$\mathrm{Y}_{\mathbb{M}}$	magnetizing admittonce
m_{2}	number of rotor phases
$\mathbb{N}_{n s}$	normal frequency synchronous specd
m_{1}	number of stator phases
$\mathrm{P}_{\text {2in }}$	rotor input power
$\mathrm{P}_{\text {cu2 }}$	rotor copper loss
P_{20}	rotor power output
$\mathrm{P}_{\text {FE }}$	core loss
$\mathrm{P}_{\mathrm{cul}}$	stator copper loss
T	elcctro-magnetic torque
I_{27}	rotor current due to $\nu^{t h}$ space harmonic
$\mathrm{P}_{2 \text { in }} \nu$	$y^{\text {th }}$ space harmonic rotor power input
$\mathrm{P}_{\text {cu2 }} \mathrm{J}$	$)^{\text {th }}$ space harmonic rotor copper loss
$\mathrm{P}_{20}{ }^{\text {\% }}$	th space harmonic rotor power output
T,	electro-magnctic torque produced by $\nu^{\text {th }}$ space harmonic

CHAPTER 6

$\%$	order of time harmonics
$\mathrm{E}_{\mathrm{g}}(\mathrm{non} \sim)$	r.m.s. value of non-sinusoidal airgap voltage
E_{gl}	```r.m.s. value of the time fundamental component of non-sinusoidal air-gap voltage```
$\mathrm{W}_{\mathrm{h}}(\mathrm{non} \sim)$	hysteresis loss due to non-sinusoidal excitation
$\mathrm{R}_{\mathrm{h}}($ non \sim)	hysteresis loss simulating resistance under non-sinusoidal excitation
C	a constant relating $E_{g(n o n \sim)}$ and $E_{g l}$
Wh(INV)	hysteresis loss under invertor operation
$W_{h}(\sim)$	hystoresis loss under sinusoidal excitation
$\mathrm{R}_{\mathrm{h} 50}$ (~)	hysteresis loss simulating resistance at 50 Hz sinusoidal excitation
R_{h} (INV)	hystercsis loss simulating resistance under invertor operation
$W_{c}($ non \cdots)	eddy current loss under non-sinusoidal cxcitation
We50(\%)	cddy current loss at 50 Hz under sinusoidal excitation
V_{γ}	r.m.s. value of $\gamma^{\text {th }}$ time harmonic of supply line to neutral voltage

W_{hf} (non \sim)
$E_{g f(\text { non } \sim}$)
$E_{g f} \gamma$
R_{Mr}
$R_{\operatorname{Tin}(I N T)}$
$Z_{1 \%}$
$z_{2} 2$
$\mathrm{Y}_{\text {M }} \mathrm{S}$
$\mathrm{E}_{\mathrm{g}}^{5}$
I_{25}
$\mathrm{I}_{\text {IL }}$
$\mathrm{I}_{\text {I }}$

hystcresis loss at any frequency f under non-sinusoidal excitation
r.m.s. air-gap voltage at any frequency f under non-sinusoidal excitation
rom.s. value of $\boldsymbol{\gamma}^{\text {th }}$ time harmonic of air-gap voltage at any frequency f
iron loss simulating resistance under non-sinusoidal cxcitation of frequency f
analogue iron loss simulating resistance for $\gamma^{\text {th }}$ time harmonic analogue iron loss simulating resistance under invertor operation at normal supply frequency
anelogue stator impedance to $x^{\text {th }}$ time harmonic
analoguc rotor impedance to $3^{\text {th }}$ time harmonic
analoguc admittance to $t^{\text {th }}$ time harmonic
$\gamma^{\text {th }}$ time harmonic r.m.s. valuc of air-gap line to ncutral analoguc voltage
stator referred $x^{\text {th }}$ time harmonic r.m.s. rotor curront
$\gamma^{\text {th }}$ time harmonic magnetizing current
$\gamma^{\text {th }}$ time harmonic stator current

$\mathrm{P}_{\text {2in }}$	$\gamma^{\text {th }}$ time harmonic rotor power input
$\mathrm{P}_{\text {cu2 } \gamma}$	$\gamma^{\text {th }}$ time harmonic rotor copper loss
$\mathrm{P}_{20 \times}$	$\rangle^{\text {th }}$ time harmonic rotor output power
P_{FE} \%	$\gamma^{\text {th }}$ time harmonic core loss
$\mathrm{P}_{\text {culx }}$	$\gamma^{\text {th }}$ time harmonic stator copper loss
$\mathrm{VA} \gamma$	$\gamma^{\text {th }}$ time hermonic stator volt-amperc input
T^{γ}	$\gamma^{\text {th }}$ time harmonic electro-megnetic torque
$S_{\text {r }}{ }^{\text {\% }}$	slip of the rotor to $\nu^{\text {th }}$ space harmonic produced by $x^{\text {th }}$ time harmonic
$I_{2 \gamma \nu}$	rotor $\nu^{\text {th }}$ space harmonic curront due to $\gamma^{\text {th }}$ time harmonic
$\mathrm{P}_{\text {2inช\% }}$	$\nu^{\text {th }}$ space harmonic rotor power input due to $\gamma^{\text {th }}$ time harmonic
$\mathrm{P}_{\text {cu2\% }}$	$\rangle^{\text {th }}$ space harmonic rotor copper loss due to $\gamma^{\text {th }}$ timo harmonic
$\mathrm{P}_{20 \% \%}$	$)^{\text {th }}$ space harmonic rotor power output due to $\gamma^{\text {th }}$ time harmonic
T $\boldsymbol{\sim}$	electro-magnetic torque produced by $\frac{\text { th }}{\gamma}$ time and $\nu^{\text {th }}$ space harmonic

CHAPTER 7

$$
\begin{aligned}
& \infty, x^{\prime}, \alpha \\
& Z_{\alpha_{j}^{\prime}}^{\prime},
\end{aligned}
$$

three different machine reforence frames
machine impcdance tensors for $\boldsymbol{\alpha}^{\text {. }}$ reference frame
$\mathrm{I}_{\hat{\mathrm{V}}}^{\text {INV }}$
$\mathrm{P}_{\hat{\mathrm{V}}}^{\text {INV }}$
$\operatorname{INV}_{V_{R Y Y}}, \operatorname{IHV}_{V_{Y B}}$,
$\mathrm{INV}_{V_{B E}}$
$\operatorname{IiNV}_{V_{R N}}, I N V_{V_{Y N}}$, INV $_{v_{B N}}$
$\mathrm{v}_{\mathrm{R}}, \mathrm{v}, \mathrm{v}_{\mathrm{B}}$,
$\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{b}}$
${ }^{T_{D}}, v_{Q}, v_{d}, v_{q}$
i^{R}, i^{Y}, i^{B},
i^{r}, i^{y}, i^{b}
$i^{D}, i^{Q}, i^{d}, i^{q}$
$\mathrm{v}_{\mathrm{F}}, \mathrm{v}_{\mathrm{B}}, \mathrm{v}_{\mathrm{f}}, \mathrm{v}_{\mathrm{b}}$
$i^{\mathrm{F}}, i^{B}, i^{\mathrm{P}}, i^{\mathrm{b}}$
peak value of idealized line to line invertor output voltage
peak value of idealized line to neutral invertor output voltage instantancous invertor three phaso line to line output voltages
instantaneous invertor threc phase line to neutral voltagos
instantoncous voltages improssed on stator R, Y, B and rotor r, y, b coils of α reference frame
instantaneous voltages improssed on stator D, Q and rotor d, q coils of α^{\prime} reforonco frame
instantancous currents flowing in stator R, Y, B and rotor r, y, b coils of α reference frame instantancous curronts flowing in stator D, Q and rotor d, q coils of χ^{\prime} reforence frame
instantancous voltages impressed on stator F, B and rotor f, b coils of $\alpha^{\prime \prime}$ reforence frame
instantoncous curronts flowing in stator F, B and rotor f, b coils of $\alpha^{\prime \prime}$ reference frame

$7^{13}{ }^{\prime \prime} x^{*}$	machine reforence frome admittance tonsors for $\alpha^{\prime \prime}$ reference frame
$\stackrel{c}{* \prime \prime}^{\prime \prime}$	transformation tensors relating quantitics to α^{\prime} quontitics $x^{\prime \prime}$
V_{*} "	voltage along α " reforenco frome
$\mathrm{V}_{\times \prime}{ }^{\prime \prime}$	voltage along α^{\prime} reference irame
$\mathrm{Z}_{\infty}{ }^{\prime \prime} \beta^{\prime \prime}$	machinc impedance tonscrs along α " reforence frame
$i^{* *}$	machine currents along α^{*} reference frame
M	stator rotor mutual inductance
I_{s}	stator self inductance
I_{r}	rotor scle inductance
p	d/dt
$\mathrm{p} \theta=\mathrm{VI}_{\mathrm{r}}$	rotor angular velocity
$\mathrm{B}_{\alpha}{ }^{\prime}$	the air-gap flux density along $\alpha^{\prime \prime}$ reference frome
$G_{\times \prime \prime \prime}{ }^{\prime \prime}$	torque tensors
T_{s}	stator time constant
T_{r}	rotor time constant
σ	leakage factor
$B_{P}, B_{B}, C_{F}, C_{B}, D_{F}$,	are the various constants
$D_{B}, K_{S}, D_{f}, K_{r}$,	
B, C, D, K	

CHAPIER 8

V_{i}	D.C. voltage across the armature of the loading machine
$I_{i 1}$	D.C. current flowing in the armature of the loading machine
$\mathrm{R}_{i_{1}}$	rosistance of D.C. loading machinc armature
$\mathrm{P}_{\mathrm{V}+\mathrm{F}}$	windage and friction loss of the induction motor and tho loading D.C. machinc
N	rotor speod in R.P.IN.

$\because P P E N D I X I$
R_{a}, R_{b}
$V_{D 0}(s)$
Laplace transform of direct axis axis voltage for one cycle only
$I_{D}(s)$
$I_{D 0}(s)$
${ }^{\Lambda_{D}}(s) s=R_{a}$,
${ }^{A_{D}}(\mathrm{~s})_{\mathrm{s}}=\mathrm{R}_{\mathrm{b}}$
${ }^{A_{D}}(s)_{s}=R_{a}, R_{b}$
K_{D}
T
Laplace transform of dircct axis current

Iaplace transform of direct axis current for one cycle only
principle terms of the Laurant's expansion about tho poles $s=R_{a}$ and $s=R_{b}$ (for diract axis)
sum of $A_{D}(s)_{s}=R_{a}$ and $A_{D}(s)_{S}=R_{b}$ (for direct axis)
hoight of direct axis voltage stop poriod of invertor output voltage

$\mathrm{T}_{\mathrm{DO}}(\mathrm{s})$
A_{1}, B_{1}, C_{1}
H(s)
$\mathrm{V}_{\mathrm{QO}}(\mathrm{s})$
$I_{Q}(s)$
$I_{Q O}(s)$
K_{Q}
$\mathrm{T}_{\mathrm{QO}}(\mathrm{s})$
${ }^{\Lambda_{Q}}(s)_{s}=R_{a}$,
${ }^{A_{Q}}(s)_{s}=R_{b}$
${ }^{L_{Q}(s)_{s}=} \mathrm{K}_{\mathrm{a}}$,

\therefore APPENDIX II

θ
$b_{1}, b_{2}, b_{3} \ldots b_{\gamma}$ $\mathrm{I}_{\mathrm{V}}^{\mathrm{RNSS}}$
$\mathrm{I}_{\mathrm{V}} \mathrm{RMS}$ INV
a factor which relates the wave-form of direct axis exciting voltage for one cycle
residucs of Laurant's expansion
impulse responsc
Laplace transform of quadrature axis voltage for one cycle only

Iaplace tronsform of quadrature axis current
Laplace transfom of quadrature axis current for onc cycle only
height of each step of quadrature axis voltage
a factor which relates the wave-form of dircct axis exciting voltage principle terms of the I aurant's expansion about the poles $s=R_{a}$ and $s=R_{b}$ (for quadrature axis) sum of $\Lambda_{Q}(s)_{s=R_{a}}$ and $\Lambda_{Q}(s)_{s}=R_{b}$
angle
cocfficients of the fourice expension rom.s. value of line to line invertor output voltage
r.m.s. value of the time fundamental component of invertor output voltage

$\mathrm{L}_{\mathrm{V}}^{\mathrm{INV}} \underset{\mathrm{iN}}{ }$	average value of invertor line to line output voltage
$\mathrm{I}_{\mathrm{K}_{\mathrm{f}}} \mathrm{INV}$	form-factor of invertor linc to lino output voltago
$\mathrm{P}_{\mathrm{V}} \mathrm{RMIS}$	r.m.s. value of linc to neutral invortor output voltage
$\mathrm{P}_{\mathrm{V}_{1}}^{\mathrm{RNIS}}$	```r.m.s. value of tho time fundamental component of invertor line to neutral outpu'; voltage```
$\mathrm{P}_{\mathrm{V}} \stackrel{i \mathrm{~V}}{\mathrm{INV}}$	average value of invertor line to neutral output voltage
$\mathrm{P}_{\mathrm{K}_{\mathrm{f}} \mathrm{INV}}$	form-factor of invertor linc to neutral output voltage

CHAPTER I

INTRODUCTI ON

In recent years there has been a rapid increase in demand for variable speed electrical drives in almost all industries and public scrvices. Although many different arrangements utilizing various types of machine have been devised in order to obtain variable speed drive, most are based on a few fundamental principles of clcctro-mechanical energy conversion.

It is considered appropriate, thercfore, that a brief review of the methods by which specd control may be achieved with electrical machines should be given.
1.1 Basic Electro-magnetic Principles behind Variablo Speed Drives

The basic principles on which the spocd variation of electrical machines depend are
(a) The voltage applied to any machine winding must balance both the active and the passive voltage of the winding.
(b) The active voltage generated in a rotor winding is proportional to the flux penctrating the winding and the relative spoed of the winding to the flux.

This active voltage is popularly termed the back emf.

Back cmf $=$ machinc constont x flux x relative specd.
The machine constant contains the design terms such as number of poles, number of rotor conductors, etc. (The only exception is the pole-change motor.)

The above cquation indicates that specd variation can be obtained by controlling individually or by any suitable combination the following three quantities :

1) Machine constant.
2) Flux.
3) Back omf.
1.2 Mcthods of Speed Control

The various well known methods of speed control will now be revicwed in light of the basic elcctro-magnetic principles stated in section 1.I.
1.2.1 Control of Speed by Variation of Active Voltage induced in a Rotor Finding

There are two basic methods of varying the voltage induced in a rotor winding, (a) resistance regulation, and (b) regulation of the voltage applied to the rotor from an external source of supply.
(a) Resistance regulation

In this method extornal resistance is introduced in the rotor circuit so that flow of curront through this resistance creates a passive voltage drop and hence brings about a change in the voltage induced in the rotor. This method of speed control as applicd to a D.C. and an i.C. motor is show in figures $\mathbf{I . l}$ and 1.2. The specd-torque characteristics for this method of speed control are shown in figure 1.14.
: ilthough simple this method suffers from certain disadvantages. A power loss proportional to the reduction of spoed occurs in the resistance. Lny change in current causcs a change in the passive voltage drop in the resistance, amounting to the chonge in speed. This method therefore suffers from large speed variation with load.

Resistance regulation has limited application. It is used intermittontly for cranc motors and for traction. It also finds application in controlling curronts and torques, where high officiency is not of prime importance.
(b) Regulation of voltage applicd to the rotor from an oxternal source

In this mothod on external voltage, nearly
independent of current, is applied to the rotor. A

igure 1.1 Speed Variation By Rotor Resistarice:- D.C. Motor.

Figurel. 2 . Speed Variation By Rotor Resistance:- A.C. Slip Ring Machine.
machine controllcd this way cxhibits a constant torquespeed characteristic. Once the speed of operation has been selected loading has little effect on speed.

Four schemes, two for D.C. machines and two for R.C. machines, in which this mothod is applicd are shown in figures 1.3 to 1.6 .

Figure 1.3 shows the popular Vard-Leonard system using threc phasc as the main supply. The A.C. driving motor is mechanically coupled to a D.C. exciter and a D.C. gencrator. The D.C. generator output voltage is varied by control of field current. The variable output voltage of the generator is fed to the armature of the variable speed D.C. motor.

Figure 1.4 shows a variation of the Ward-Leonard system where the main supply voltage is unidirectional. This system employs positive and negative booster so connected that it either adds or subtracts its voltage from the main D.C. supply and the resultant variablc D.C. voltage is applicd across the variable speed D.C. motor armature.

Figure 1.5 shows the application of this method to a three-phasc slip ring machine. Since the voltage at the slip rings has, (in goneral), a frequency difforent from that of the main supply, a variable frequency convertor

3-Phase A.C.

Figure 1.3 Ward-Leonard Variable Speed Drive:- Main Power Supply A. C.

Figure 1.4 Ward-Leonard Variable Speed Drive:- Main Power Supply D.C.

3-Phase Mains

Figure 1.5 Speed Variation By Rotor Voltage Injection:- Slip Ring Machine

Figure 1.6 Speed Variation By Rotor Voltage injection:- A.C. Commutator Machine.
and a variable voltage source are required to impart variable speed to the slip ring machine. limong several other alternatives, a. Schorbius machine may be used for the frequency convertor.

The requirement of an additional rotating machine has caused the decline of this method for speed control which in practice is restricted to very large sets.

Replacement of slip rings by a commutator converts the variable rotor frequency to the supply frequency. Speed control of i.c. machines with commutators can be achieved by feeding the brushes with variable voltage of supply frequency.

This system, as show in figure 1.6, has a shunt torque-speed characteristic and is widely used. The speed-torque characteristics of this method of speed control are shown in figure 1.15.

1.2.2. $\frac{\text { Variable speed drive by }}{\text { field flux control }}$

Application of this principle to series field (D.C. and R.C. motors) and shunt field (D.C. and A.C. motors) will be discussed.

(a) Series field motors

Figure 1.7 shows a simple D.C. series motor with a variable resistance connected in shunt with the field

Field

D.C. Mains

Figure 1.7 Speed Control By Field Flux Variation:- D.C. Series Motor.

Figure 1.8 Speed Control By Field Flux Variation:- D.C. Series Motor.
winding. Adjustment of this resistance, popularly known as diverter resistonce, causes the ficld flux to decrease and the speed to increase.

Figure 1.8 shows another method of speed control where arrangements are made for connecting the ficld coils, in series, for low speeds, and in parallel, for high speeds.

The armature winding of a D.C. serics motor is usually designed to allow the full supply voltage to be applied to it. In the case of A.C. motors (Figure 1.9) it is in general necessary to couple the stator and the rotor winding through a transformer. For a given turms ratio of the transformer the currents in the rotor and the stator is always proportional.

Speed control is obtained by adjustment of phase position between stator and rotor current which is achieved by the brush gear shift.

If the intermediate transformer is replaced by an induction regulator, it is possible to obtain speed control without resorting to brush shift.

The speed-torque characteristics of such methods of speed control are shown in figure 1.16.
(b) Shunt motors
idjustment of the field current of a D.C. shunt

Figure 1.9 Speed Variation By Field Flux Control:- A.C. Series Motor.

D.C. Mains

Figure 1.10 Speed Variation By Field Flux Control:- D.C. Shunt Motor.
machine for imparting variable speed is well known (Figure 1.10).

Specd control ofan A.C. shunt motor can be similarly attained but control is effective only if the machine operates at a speed different from the synchronous specd of the machine.

Specd control of h.C. shunt motors by stator voltage regulation is carricd out in conjunction with a rotor voltage regulation (Figure 1.11). This is similar to the Ward-Leonard control scheme with field control of the main variable specd D.C. motor.

It can be seen from figure 1.11 that it is possible to reduce the flux of the motor with roducing speed by introducing a bucking voltage in the stator circuit. By this means a useful improvement of the performance, officiency and power factor can be obtained in connection with drives which require low torques at low speeds, as in fans and pumps, for cxample.

The speed-torque characteristics of ficld-controlled shunt motors are shown in figure 2.17.
1.2.3. Speed control through change
of rotational spocd of stator

field

This method of speed control is only applicable to A.C. motors. The speed of rotation of the stator ficld

Figure 1.11 Speed Variation By Field Flux Control:- A.C. Shunt Commutator Motor.
is directly proportional to the number of poles and the frequency of the stator supply. Variation of either the number of poles or supply frequency can give a variable speed drive.
(a) Pole change motor

Motors of this type are usually constructod by providing the stator with two or more separate windings corresponding to two or more different number of pole pairs. These windings c an be individually connected to the supply causing the rotor to rotatc at different speeds.

A single winding could be used to provide different numbers of pole pairs by a suitable switching scheme.

Combination of the above two methods can be used to obtain more than two spocds. The system suffers from the disadvantage that only a limited number of fixed specds can be obtained and infinitely variable speed control cannot be achicved.
(b) Speed control by supply froquency variation
This method is perhaps the most flexible of all other methods and has the advantage that it con be used in machines with cage rotors.

There are various schemes which give variable frequency supplios.

Perhaps the most direct method is to drive an alternator at a variable specd so that a variable-frequency voltage is generated in the alternator $1 . C$. windings.

If only a fixed frequency threc-phase A.C. supply is available a variable speed frequency chenger set, driven by a variable speed i.c. commatator motor, can be used to supply variable frequency voltage to the induction motor or motors as shown in figure l.J.2.

In alternative but more efficient and economical method of obtaining variable frequency is to use a threcphase variable speed A.C. commutator machine with slip rings (Figure l.13). This results in a sclf-propolled frequency convertor as opposed to the externally propelled frequency changer mentioncd above. This system, disregarding the induction motors connected to its slip rings, functions exactly as a light running commutator machino. The adjustment of speed is carried out by means of an induction regulator connected to the commutator brushos. The frequency obtainable at the slip rings depends on the difference between the actual and synchronous speeds.

The advantage of the system is that the slip ring and commutator currents tend to cancel one another as in a rotary convertor. The system possesses high efficiency and small size. The speed-torque characteristics of this

Figure 1.12 Variable Speed By Frequency Control Via Frequency Changer.

Figure 1.13 Variable Speed By Frequency Control Via Frequency Converter.

Figure 1.14 Speed Variation By Rotor Resistance.

Figure 1. 15 Speed Control By Rotor

$$
\begin{aligned}
& \text { Voltage Injection } \\
& \text { (A.C. \& D.C. Shunt } \\
& \text { Machines) }
\end{aligned}
$$

Figure 1.16 Speed Control By Field Flux Control
(A.C. \& D. C. Series Motors)

Torque

Figure 1.17 Speed Control By Field Flux Control. (A.C. \& D.C. Shunt Motor)

Figure 1.18 Speed Control By Frequency Control.
method of speed control are shown in figure 1.18.
This and similar arrangements have found their applications in cases where high specds ore required at the final motor shaft, as at high speeds it is easicr to construct a cage-rotor machine than a commutator machine.
iny number of induction motors can be connected to the system and this creates the possibility of obtaining simultancous speed control of cage-rotor machincs over a wide speed range.

Amongst the various systems, the arrangement involving the self-propelled frequency convertor, is frequently adopted where variable-speed group drives are required.

The greatest weakness of the speed control systems described above lies in the presence of a commutator somewhere in the link. The commutator with its associated brush gear requires considerable maintainance. Conditions of maximum speed, voltage and temperature rise are imposed on the machine by the commutator.

With the advent of high power thyristors, static variable frequency invertors and cyclo-convertors are rapidly entering the ficld of variable speed drives. Efficient and compact invertors and cyclo-convertors can be constructed. Invertor-driven motors with suitable feed-
back control systems have floxibility and can produce any desired torque-speed characteristic within the limits of the machine. Although semi-conductor devices used in invertors are suscoptible to over-loads, invertors an be designed and constructed so that external failures do not cause intemal damage.

Invertors with sinusoidal output voltage are availablo, but are seldom uscd for variable specd motor drives on cconomic grounds.

Invertors used for variablc speed motor drives are comparatively cheaper than those with sinusoidal output but deliver non-sinusoidal output voltages.

1.3. The Object of the Investigation and the liay-out of the Thesis

The project undertaken involved the dosjen of an invertor and the measuremont and prediction of the performance of an induction motor when invertor-fed.

The gencral description and the design equations of an invertor are given in chapter 2. Chapter 3 deals with the design of an invertor to a given specification. Details of the experimental determination of an induction motor equivalent circuit parameters are given in chapter 4. The nature of variation of these parametors with frequency is also cxamined. Chaptor 5 is devoted to induction motor
losses under fixed and variable frequency sinusoidal excitation. The effects of the space harmonics of the machinc air-gap mmf are also discussed. The contribution of the time-harmonics of the invertor supply to induction motor performance is oxamined in chaptor 6 . Chaptor 7 deals with the prediction of current wave-form and instantaneous torque of an invortor-fod machinc. The prediction of the stator line current wave-form boars a direct relation to the invertor design. The measured motor performance undor sinusoidal excitation and when fed from the invertor is described in chapter 8. The general conclusions from the investigation are given in chapter 9.

CHAPTER 2

THE INVERTOR

Threc-phase thyristor invertors may be classificd according to the method of commutation which may be carried out on the D.C. side or the i.C. side. D.C. side commutation may be further subdivided into single or double side commutated invertor since the thyristor connected to either or both the D.C. lines may be switchod off during commutation. in invertor employing single D.C. side commutation vas used on grounds of simplicity and cost.
2.1. Singlc D.C. Side Impulse

Commutated Invertor
Figure 2.1. is the circuit diagram of a single
D.C. side commutated invertor which was built from six thyristors Th_{1} to Th_{6} used in bridge configuration to switch the D.C. supply to the load in a pre-determincd fashion, so as to produce threc-phase alternating voltage wave-form at the load terminals. The commutation circuit consists of two chokes I_{1} and L_{2} in the positive and negative D.C. lines, two D.C. line diodes D_{7} and D_{8} and the comutating capacitor C_{3}. Capacitor C_{A}, C_{B}, C_{C} and C_{D} are the D.C. supply reservoir capacitors. V_{I} is the main D.C. supply and V_{2} the auxiliary D.C. supply voltage

Figure 2.1 Single D.C. Side Impulse Commutated Invertor.
for commutation. Diodes D_{1} to D_{6} in the bridge arrangement are provided for energy stored in the load to be fed back to the main D.C. supply.

2.2. Operation of the Invertor

The gating sequence of the thyristors and the line to line output voltage of the invertor is shown in figure 2.2. The main bridge thyristors were gated for 180° conduction, but the actual angle of conduction of these thyristors depended on load conditions. The sum of conduction angles of any bridge thyristor and its complementary diode (e.g. Th_{5} and D_{5}) is always 180°.

The operation of the invertor is as follows. Referring to figures 2.1 and 2.2, and starting from the instant when thyristors $T h_{6}, T h_{1}$ and $T h_{2}$ are conducting, current flows into the R terminal and out of the Y and B terminals of the load. The commutating capacitor C_{3} is charged to $\frac{1}{2}\left(V_{1}+V_{2}\right)$ volts with the point m (Figurc 2.I) positive with respect to the neutral n. L ll potentials referred to hereafter are with respect to the neutral point n. Thyristor Th_{8} is then fired which causes the negative rail of the thyristor bridge to rise to a voltoge ($\frac{1}{2} V_{1}+V_{2}$) volts. The negative D.C. rail of the thyristor bridge is now more positive than that of the positive terminal of the nain D.C. supply. Since the diodes D_{6} and D_{2} clamps the anodes

Figure 2.2 Firing Pattern of The Invertor Thyristors And The Instantaneous Line To Line Output Voltages
of thyristors $T h_{6}$ and Th_{2} at a potential of $\frac{1}{2} \mathrm{~V}_{1}$ volts, the two thyristors are reverscd biascd by V_{2} (auxiliary supply voltage) volts and hence ceases to conduct. The commutation circuit constants are chosen so that the thyristors are reversed biased for sufficiont time to recover the forward blocking capability. For an inductive load the currents from the Y and B terminals now flows to the positive terminal of the main D.C. supply, via diodes D_{6} and D_{2}.

During the commutation process the terminal m of the commutating capacitor C_{3} becomes negative and the current I_{0} flowing in the choke I_{2}, at the instant of commutation, increases. The potential of the point U (Figure 2.1) on the negative D.C. rail of the thyristor briage falls from $\left(\frac{1}{2} V_{1}+V_{2}\right)$ volts, and when the potential of this point becomes $\frac{1}{2} V_{1}$, the thyristors $T h_{6}$ and $T h_{2}$ loose their reverse bias and then on they progressively receive positive voltage. The rate of increase of forward voltage across the thyristors must be less than their " $\frac{d v "}{d t}$ capability. The time interval between the gating of thyristor $T h_{8}$ and the instant when thyristors $T h_{6}$ and $T h_{2}$ becomes forward biased is denoted by t_{o} and this time should bo greater than the rated turn-off time of the thyristors. After a time t_{c} the potontial of point U becomos $-\frac{1}{2} V_{I}$ and the current
through the choke I_{2} reaches its peak value I_{p}. As this current cannot suddenly cease to flow, the capacitor \mathcal{C}_{3} tends to charge to a higher potential difference. This causes the potential of the point U to fall below $-\frac{1}{2} V_{1}$ but the Iall is limited by the diode D_{8}. The current I_{p} now ceases to flow through the commutating thyristor T_{8} and diverts through diode D_{8}. During this process the commutating capacitor C_{3} is charged to the correct potential and polarity to ensure the next commutation of the positive rail thyristors.

Thyristors $T h_{1}$, and and T_{3} are now gated. As thyristor $T h_{l}$ was not affected during the negative rail commutation, current readily flows into the R terminal of the load. As current was flowing out of B terminal of the load thyristor Th_{2} readily takes up this current. But thyristor T_{3} cannot readily build up the current since it flows out of Y phase into the positive terminal of the main D.C. supply through diode D_{6}. It may be noted that this Y phase current is in a decaying mode and sooner or later falls to zero. A build up of current in Y phase then takes place through thyristor $\mathrm{Th}_{3^{\circ}}$ The current reversal in Y phase is thus achieved. A similar process takes place for the other two phases, causing a three-phase alternating current to flow into the load.

2.3 Analysis of Commutation Circuit

From the instant when the top commutating thyristor $T h_{7}$ is fired, to the instant when it switches off the commutating circuit configuration is as shown in figure 2.3. It is assumed that at the instant when thyristor $T h_{7}$ is fired the current flowing through tho choke I_{1} is I_{0}. The time interval between the switching "on" of thyristor Th h_{7} and its switching "off", denoted by "t ${ }_{c}$ ", is the total commutation interval. The voltage to which the capacitor C_{3} is charged initially is $\frac{1}{2}\left(V_{1}+V_{2}\right)$ volts.

The Laplace equivalent of the commutation circuit (Figure 2.3) is shown in figure 2.4. The current response of the circuit is given by

$$
\begin{equation*}
I(s)=\frac{\left(V_{1}+V_{2}\right) / s+I_{1} I_{0}}{s I_{1}+r_{1}+\frac{I}{s C_{3}}} \tag{2.1}
\end{equation*}
$$

Inverting

$$
\begin{equation*}
i(t)=\frac{\left(V_{1}+V_{2}\right)}{I_{1}} e^{-x t} \sin w t-I_{0} \frac{w_{0}}{w} e^{-x t} \sin (w t-\phi) \tag{2.2}
\end{equation*}
$$

where

$$
w=\left(w_{0}^{2}-\alpha^{2}\right)^{\frac{1}{2}}
$$

Figure 2.3 Commutation Circuit Configuration When The Positive D.C. Line Commutating Thyristor is Fired.

Figure 2.4 Laplace Equivalent Circuit Of Figure 2.3.

$$
\begin{align*}
\tan \varnothing & =w / \alpha \tag{2.4}\\
w_{0} & =1 /\left(I_{1} C_{3}\right)^{\frac{1}{2}} \tag{2.5}\\
\alpha & =r_{1} / 2 I_{1} \tag{2.6}
\end{align*}
$$

With realistic values of $r_{1} / 2 L_{1}$ the response computed for a quarter cycle from equation 2.2 is hardly any different from that computed from the same equation with $\alpha=0$.

$$
\begin{aligned}
& \text { (With } r_{1}=0.5, I_{1}=123, \mathrm{H}, \mathrm{C}_{3}=20_{\mu} \mathrm{F} \text {, } \\
& \mathrm{V}_{1}=160 \mathrm{~V} \text { and } \mathrm{V}_{2}=120 \mathrm{~V} \text { (Chapter 3), the } \\
& \text { current } i(t) \text { at the end of quarter cycle from } \\
& \text { equation } 2.2 \text { is } 109.4 \mathrm{~A} \text { and that from equation } \\
& 2.8 \text { is } 114 \mathrm{~A} \text {) }
\end{aligned}
$$

Hence with the assumption $\alpha=0$

$$
\begin{equation*}
w=w_{o} \tag{2.7}
\end{equation*}
$$

and

$$
i(t)=\frac{V_{I} V_{2}}{W_{0} I_{I}} \sin w_{0} t_{0}-I_{0} \sin \left(w_{0} t_{0}-\frac{\pi}{2}\right)
$$

$$
\begin{equation*}
=\frac{V_{1}+V_{2}}{w_{0} I_{I}} \sin w_{0} t-I_{0} \cos \left(w_{0} t\right) \tag{2.8}
\end{equation*}
$$

Substituting

$$
\begin{align*}
& \left.I_{p} \sin \theta=\left(V_{1}+V_{2}\right) / W_{0} I_{1}\right) \tag{2.9}\\
& I_{p} \cos \theta=I_{0} \tag{2.10}
\end{align*}
$$

it can bo derived that

$$
\begin{equation*}
i(t) \quad=I_{p} \cos \left(w_{0} t-\theta\right) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
I_{p} & =\left[I_{0}^{2}+\left\{\left(V_{1}+V_{2}\right) /\left(w_{0} I_{I}\right\}\right\}^{2}\right]^{\frac{1}{2}} \\
& =I_{0}\left[I+\left\{\left(I+\frac{V_{2}}{V_{1}}\right) V_{I} / I_{0} w_{0} I_{1}\right\}^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

and

$$
\begin{equation*}
\tan \theta=\left(1+\frac{V_{2}}{V_{1}}\right) V_{1}\left(I_{0} W_{0} I_{1}\right) \tag{2.13}
\end{equation*}
$$

it the instant of commutation the current flowing from the supply was I_{0} and as such the quantity $\frac{V_{I}}{I_{0}}$ may be treated as dynamic D.C. input resistance of the inverter at the instant of commutation.

$$
\begin{equation*}
R_{i n}=V_{1} / I_{0} \tag{2.14}
\end{equation*}
$$

Substituting equation 2.14 in equation 2.12

$$
\begin{align*}
I_{p} / I_{0} & =\left[I+\left\{R_{\text {in }}\left(I+V_{2} / V_{1}\right) /\left(v_{0} I\right)\right\}^{2}\right]^{\frac{1}{2}} \\
& =\left[I+\left\{\left(\tau_{c} / \tau_{1}\right) \frac{1}{2}\left(I+V_{2} / V_{1}\right)\right\}^{2}\right]^{\frac{1}{2}} \tag{2.15}
\end{align*}
$$

where

$$
\begin{align*}
\tau_{c} & =R_{i n} C_{3} \tag{2.16}\\
\tau_{1} & =I_{1} / R_{i n} \tag{2.17}
\end{align*}
$$

Further substituting

$$
\begin{equation*}
k=I /\left(I \mp V_{2} / V_{1}\right) \tag{2.18}
\end{equation*}
$$

in equation 2.15

$$
\begin{equation*}
I_{\mathrm{p}} / I_{o}=\left[1+\left\{\left(\tau_{\mathrm{c}} / \tau_{I}\right)^{\frac{1}{2}} / \mathrm{k}\right\}^{2}\right]^{\frac{1}{2}} \tag{2.19}
\end{equation*}
$$

Defining

$$
\begin{equation*}
x=\left[\left(I_{p} / I_{0}\right)^{2}-I\right]^{\frac{1}{2}} \tag{2.20}
\end{equation*}
$$

a variable, it can be obtained from equation 2.19

$$
\begin{equation*}
x k=\left(T_{c} / \tau_{1}\right)^{\frac{1}{2}} \tag{2.21}
\end{equation*}
$$

From equation 2.13

$$
\tan \theta=Y_{1}\left(I+V_{2} / V_{1}\right) /\left(w_{0} I_{I} I_{0}\right)
$$

$$
\begin{align*}
& =R_{\text {in }}\left(C_{3} / L_{1}\right)^{\frac{1}{2}} / \mathrm{Z} \\
& =\left(T_{C} / T_{7}\right)^{\frac{1}{2}} / \mathrm{R} \\
& =\mathrm{x} \tag{2.22}
\end{align*}
$$

The quantity "k" is a measure of the ratio of the auxiliary supply voltage V_{2} to the main supply voltage and may be treated as an independent design variable. The quantity x is a measure of the current rise due to commutation and may also be treated as another independent design variable. Equation 2.21 is a measure of the required ratio of C_{3} and L_{1} for given values of x and k.
2.3.1. Bridge thyristor reverse
bias time

The voltage across the commutating capacitor is given by

$$
\begin{aligned}
V_{c_{3}}(s) & =-\frac{1}{2}\left(V_{1}+V_{2}\right) / s+i(s) /\left(s C_{3}\right) \\
& =-\frac{1}{2}\left(V_{1}+V_{2}\right) / s+\frac{\left(V_{1}+V_{2}\right) /\left(s_{1} C_{3}\right)+I_{0} / C_{3}}{s^{2}+r_{1} / I_{1}+1 /\left(I_{1} C_{3}\right)}
\end{aligned}
$$

Inverting

$$
\begin{aligned}
v_{c_{3}}(t)= & \frac{1}{2}\left(v_{1}+v_{2}\right)-\left[w\left(v_{1}+v_{2}\right) / w_{0}\right] e^{-x t} \sin (w t-\phi) \\
& +\left[I_{0} /\left(w C_{3}\right)\right] e^{-\alpha t} \sin w t
\end{aligned}
$$

With $r / L_{I} \leqslant 1$

$$
\begin{align*}
v_{c_{3}}(t)= & \frac{1}{2}\left(V_{1}+V_{2}\right)-\left(V_{1}+V_{2}\right) \sin \left(w_{0} t+\pi / 2\right) \ldots \\
& +I_{0} /\left(w_{0} C_{3}\right) \sin w_{0} t \\
= & \frac{1}{2}\left(V_{1}+V_{2}\right)-\left(V_{1}+V_{2}\right) \cos w_{0} t \\
& +I_{0} /\left(w_{0} C_{3}\right) \sin w_{0} t \tag{2.23}
\end{align*}
$$

The voltage of the point X with respect to the neutral n (Figures 2.1 and 2.5)

$$
\begin{align*}
\mathrm{v}_{\mathrm{Xn}}(t) & ={ }_{v_{C_{3}}}(t)-\frac{1}{2} V_{2} \\
& =\frac{1}{2} V_{1}-\left(V_{1}+V_{2}\right) \cos w_{0} t+I_{0} /\left(w_{0} C_{3}\right) \sin w_{0} t \tag{2.24}
\end{align*}
$$

At the instant of commutation

$$
\begin{equation*}
v_{X n}(0)=-\left(\frac{1}{2} V_{1}+V_{2}\right) \tag{2.25}
\end{equation*}
$$

Reverse bias on the top bridge thyristor ends when the potential of the point X reaches the value $-\frac{1}{2} V_{I}$

$$
\begin{aligned}
& -\frac{1}{2} V_{1}=\frac{1}{2} V_{1}-\left(V_{1}+V_{2}\right) \cos w_{0} t_{0}+I_{0} /\left(w_{0} C_{3}\right) \sin w_{0} t_{0} \\
& V_{1} w_{0} C_{3} / I_{0}-\left\{V_{1} w_{0} C_{3}\left(1+V_{2} / V_{1}\right) / I_{0}\right\} \cos w_{0} t_{0}+\sin w_{0} t_{0}=0
\end{aligned}
$$

Figure 2.5 Commutation Circuit Current And Thyristor Bridge Positive D. C. Line Porential During Commutation.

Substituting in the above equation

$$
\begin{equation*}
V_{I} / I_{0}=R_{i n} \tag{Equation2.14}
\end{equation*}
$$

an $\bar{\alpha}$

$$
\begin{align*}
& I /\left(I+V_{2} / V_{1}\right)=\mathrm{k} \quad \text { (Equation } 2.1\} \\
& R_{i n}\left(C_{3} / I_{1}\right)^{\frac{1}{2}}-\left\{R_{i n}\left(C_{3} / L_{1}\right)^{\frac{1}{2}} / \mathrm{k}\right\} \cos w_{0} t_{0}+\sin w_{0} t_{0} \\
&=0 \\
& I x-x \cos w_{0} t_{0}+\sin w_{0} t_{0}=0 \tag{2.26}
\end{align*}
$$

because

$$
x k \quad=\left(T_{c} / T_{1}\right)^{\frac{1}{2}}=R_{\text {in }}\left(C_{3} / L_{1}\right)^{\frac{1}{2}}
$$

(Equations 2.21, 2.16, 2.17)

Equation 2.26 is now rewritten as $x \cos w_{0} t_{0}-\sin w_{0} t_{0}=k x$

Substituting

and | x | $=\mathrm{R} \sin \theta$ |
| ---: | :--- |
| I | $=\mathrm{R} \cos \theta$ |
| R | $=\left(x^{2}+1\right)^{\frac{1}{2}}$ and $\tan \theta=x$ |

Therefore equation 2.27 becomes

$$
\begin{aligned}
& \left(x^{2}+1\right)^{\frac{1}{2}} \sin \left(\theta-w_{0} t_{0}\right)=k x \\
& \sin \left(\theta-w_{o} t_{0}\right)=k x /\left(x^{2}+1\right)^{\frac{1}{2}} \\
& \left.\tan \left(\theta-w_{o} t_{0}\right)=k x / 1+x^{2}\left(1-k^{2}\right)\right\}^{\frac{1}{2}} \\
& w_{0} t_{0}=-\tan ^{-1}\left[k x /\left\{1+x^{2}\left(1-k^{2}\right)^{\frac{1}{2}}\right]+\tan ^{-1} x\right. \\
& t_{0} /\left(r_{c} T_{1}\right)^{\frac{1}{2}}=\tan ^{-1} x-\tan ^{-1}\left[k x /\left\{1+x^{2}\left(1-k^{2}\right)^{\frac{1}{2}}\right]\right.
\end{aligned}
$$

The above equation gives the product of the time of reverse bias t_{0} and the natural angular frequency w_{o} of the commutation circuit as a function of the independent variables x and k. her dependent design variable $f_{l}(x, k)$ be defined as

$$
\begin{aligned}
f_{1}(x, k) & =w_{0} t_{0} \\
& =t_{0} /\left(r_{c} \tau_{1}\right)^{\frac{1}{2}} \\
& =\tan ^{-1} x-\tan ^{-1}\left[k x /\left\{1+x^{2}\left(1-k^{2}\right)\right\}^{\frac{1}{2}}\right]
\end{aligned}
$$

2.3.2. Total commutation time ${ }_{c}$

Total commutation time t_{c} is defined as the time required for the point X to reach a potential of $\frac{1}{2} V_{l}$ (Figures 2.1 and 2.5).

Substituting $t=t_{c}$ in equation 2.24

$$
\begin{aligned}
& \frac{1}{2} V_{1}=\frac{1}{2} V_{1}-\left(V_{1}+V_{2}\right) \cos w_{0} t_{c}+I_{0} /\left(w_{0} C_{3}\right) \sin w_{0} t_{c} \\
\therefore & \tan w_{0} t_{c}=V_{1}\left(1+V_{2} / V_{1}\right) w_{0} C_{3} / I_{0}
\end{aligned}
$$

Substituting equations $2: 14$ and 2,18 in the above equation

$$
\begin{align*}
\tan w_{o} t_{c} & =R_{i n}\left(c_{3} / L_{1}\right)^{\frac{1}{2}} / \mathrm{k} \\
& =\left(T_{c} / T_{1}\right)^{\frac{1}{2}} / \mathrm{k} \\
& =x \\
\therefore w_{o} t_{c} & =\tan ^{-i_{x}} \tag{2.29}
\end{align*}
$$

(Equation 2.22)

The expression of current during commutation interval is given by

$$
\begin{equation*}
i(t) \quad=I_{p} \cos \left(w_{o} t-\theta\right) \tag{Equation2.11}
\end{equation*}
$$

At the end of the commutation inverval t_{c}, the current has risen from its initial value I_{0} to I_{p}. The current through the commutating capacitor C_{3} and the voltage of point X during the commutation of a positive rail thyristor is shown in figure 2.5 .
2.3.3. $\frac{\text { Commutation circuit }}{\text { inductance and capacitance }}$

The commutation circuit inductance I_{1}, and I_{2}
$\left(I_{1}=I_{2}\right)$ and capacitance C_{3} are expressed in nondimensional form as function of x and k, in order to derive a set of curves applicable to all invertors of the type considered.

Rewriting equations 2.21 and 2.23 for convenience

$$
\begin{aligned}
& \mathrm{xk} \\
& =\left(T_{c} / T_{1}\right)^{\frac{1}{2}} \\
& \mathrm{f}_{1}(\mathrm{x}, \mathrm{k})=\mathrm{t}_{0} /\left(T_{c} \tau_{1}\right)^{\frac{1}{2}}
\end{aligned}
$$

it can be shown that

$$
\begin{align*}
f_{4}(x, k) & =T_{I} / t_{0} . \\
& =I /\left\{x k f_{I}(x, k)\right\} \tag{2.30}
\end{align*}
$$

and

$$
\begin{align*}
f_{5}(x, k) & =T_{c} / t_{0} \\
& =x k / f_{1}(x, k) \tag{2.31}
\end{align*}
$$

where $f_{4}(x, k)$ and $f_{5}(x, k)$ are inductance and capacitance functions respectively.
2.3.4. Energy loss in the commutating line chokes
The energy gained by the commutation choke during the commutation inverval

$$
\begin{equation*}
\varepsilon_{\mathrm{c}}=\frac{1}{2} \mathrm{I}_{1}\left(I_{\mathrm{p}}^{2}-I_{0}^{2}\right) \tag{2.32}
\end{equation*}
$$

The commutation energy required per joule of diverted D.C. rail energy

$$
\begin{align*}
f_{2}(x, k) & \left.=\frac{1}{2} I_{1} I_{0}^{2}\left\{\left(I_{p} / I_{0}\right)^{2}-I\right\} / V_{1} I_{0} t_{0}\right) \\
& =\frac{1}{2} I_{1} x^{2} /\left(R_{i n} t_{0}\right) \\
& =\frac{1}{2} I_{1} x^{2} / t_{0} \tag{2.33}
\end{align*}
$$

But

$$
\begin{equation*}
\tau_{1} / t_{0}=1 /\left\{\operatorname{xkf}_{1}(x, k)\right\} \tag{Equation2.30}
\end{equation*}
$$

So that commutation energy loss function, defined as

$$
\begin{align*}
f_{2}(x, k) & =\ell_{c} /\left(V_{I} I_{0} t_{0}\right) \\
& =\frac{1}{2} x /\left\{k f_{1}(x, k)\right\} \tag{2.34}
\end{align*}
$$

2.3.5. $\frac{\text { Peak flux linkage of }}{\text { commutation chokes }}$

The peak flux-linkage produced is an important
factor concerning the cost of the commutation chokes. It will be show that minimum flux-linkage and maximum commutation efficiency are conflicting requirements. The peak flux-linkage is given by $I_{1} I_{p}$. The D.C. main supply voltage V_{I} is fixed by the $A . C$. output voltage consideration.

The reverse bias time t_{0} of the bridge thyristors is fixed by the manufacturer. The peak flux-linkage function $f_{3}(x, k)$ is given by

$$
\begin{aligned}
f_{3}(x, k) & =L_{1} I_{p} /\left(V_{1} t_{0}\right) \\
& =L_{1} I_{0}\left(1+x^{2}\right)^{\frac{1}{2}} /\left(V_{1} t_{0}\right) \\
& =L_{1}\left(1+x^{2}\right)^{\frac{1}{2}} /\left(R_{i n} t_{0}\right) \\
& =\tau_{1}\left(1+x^{2}\right)^{\frac{1}{2}} / t_{0}
\end{aligned}
$$

Substituting equation 2.30 in the above equation

$$
\begin{align*}
f_{3}(x, k) & =I_{1} I_{p} /\left(V_{1} t_{0}\right) \\
& =\left(I_{t} x^{2}\right)^{\frac{1}{2}} /\left\{x k f_{1}(x, k)\right\} \tag{2.35}
\end{align*}
$$

2.3.6. Commutating thyristor $i^{2} t$ rating

This rating is important for the choice of the commutating thyristors which carry heavy current pulses of very short duration t_{c} (about•100 4sec).

The commutating thyristors carry current for an inverval t_{c} (time for commutation), with initial current I_{o} and the final current I_{p}, according to the relation

$$
i(t) \quad=I_{p} \cos \left(w_{o} t-\theta\right)
$$

(Equation 2.11)
where

$$
\begin{aligned}
& I_{p}=I\left(I+x^{2}\right)^{\frac{1}{2}} \\
& w_{0} \quad=I /\left(I_{1} C_{3}\right)^{\frac{1}{2}} \\
& \theta \quad=\tan ^{-1} x \\
& =W_{0}{ }_{C} \\
& \therefore \int_{0}^{t^{c}} i^{2} d t=\int_{0}^{t_{c}} I_{p}^{2} \cos ^{2}\left(w_{0} t-\theta\right) d t \\
& \left.=\frac{1}{2} I_{p}^{2}\left\{t+\frac{1}{2} \sin 2\left(w_{0} t-\theta\right)\right\} / w\right\}_{0}^{t} . c \\
& \text { (Equation 2.20) } \\
& \text { (Equation 2.5) } \\
& \text { (Equation 2.22) } \\
& \text { (Equation 2.29) }
\end{aligned}
$$

From equation 2.29 when $t=t_{c}$, ie. at the end of commutation $\mathrm{w}_{0} \mathrm{t}_{\mathrm{c}}=\theta$

$$
\begin{aligned}
\therefore \int_{0}^{t} i^{2} d t & \left.=\frac{1}{2} I_{p}^{2}\left\{t_{c}-\frac{1}{2} \sin 2 \theta\right) / w_{0}\right\} \\
& =\frac{1}{2} I_{p}^{2}\left(\tan ^{-1} x-\sin \theta \cos \theta\right) / w_{0}
\end{aligned}
$$

From equation 2.22

$$
\begin{aligned}
\sin \theta \cos \theta & =x /\left(1+x^{2}\right) \\
\therefore & \int_{0}^{t_{0}} i^{2} d t
\end{aligned}=\frac{1}{2} I_{p}^{2}\left\{\tan ^{-1} x-x /\left(1+x^{2}\right)\right\} / w_{0} .
$$

Substituting the value of w_{0} from equation 2.28 in the above equation

$$
\int_{0}^{t_{c}} i^{2} d t=\frac{1}{2} I_{p}{ }^{2} t_{o}\left\{\tan ^{-1} x-x /\left(1+x^{2}\right)\right\} / f_{I}(x, k)
$$

Replacing I_{p} in terms of I_{o} from equation 2.20

$$
\begin{aligned}
\int_{0}^{t_{c}} i^{2} d t & =\frac{1}{2} I_{0}^{2} t_{0}\left(1+x^{2}\right)\left\{\tan ^{-1} x-x /\left(1+x^{2}\right)\right\} / f_{1}(x, k) \\
& =\frac{1}{2} I_{0}^{2} t_{0}\left\{\left(x^{2}+1\right) \tan ^{-1} x-x\right\} / f_{1}(x, k)
\end{aligned}
$$

Commutating thyristor $i^{2} t$ function defined as

$$
\begin{align*}
f_{6}(x, k) & =\int_{0}^{t_{c}} i^{2} d t /\left(I_{0}{ }^{2} t_{0}\right) \\
& =\frac{1}{2}\left\{\left(x^{2}+1\right) \tan ^{-1} x-x\right\} / f_{1}(x, k) \tag{2.36}
\end{align*}
$$

This equation gives the ratio of $i^{2} t$ flowing through the commutation thyristor to $I_{0}{ }^{2} t_{0}$ during commutation process.

2.3.7. R.M.S. current of

 commutation thyristorAt an invertor output frequency of $f \mathrm{~Hz}$, the interval between commutations of either positive line or negative D.C. line thyristor is given by $\frac{1}{5} f$. The r.m.s.
commutation thyristor current is given by

$$
{ }^{C} I_{\text {RMS }}=(3 t)^{\frac{1}{2}}\left[\int_{0}^{t} i^{2} d t\right]^{\frac{1}{2}}
$$

From equation 2.36

$$
{ }^{C} I_{\mathrm{RMS}}=(3 f)^{\frac{1}{2}}\left[\frac{1}{2} I_{0}^{2} t_{0}\left\{\left(x^{2}+1\right) \tan ^{-1} x-x\right\} / f_{I}(x, k)\right]^{\frac{1}{2}}
$$

and we can define, for future use.

$$
\begin{align*}
f_{7}(x, k) & ={ }^{C_{I_{\text {RMS }}} /\left\{\left(3 t_{0}\right)^{\frac{1}{2}} I_{0}\right\}} \\
& =\left[\frac{1}{2}\left\{\left(x^{2}+I\right) \tan ^{-1} x-x\right\} / f_{1}(x, k)\right]^{\frac{1}{2}} \tag{2.37}
\end{align*}
$$

2.3.8. Average current of
commutation thyristor

The commutation thyristor current during the commutation interval t_{c} is given by

$$
\begin{align*}
i & =I_{p} \cos \left(w_{o} t-\theta\right) \tag{2.11}\\
\therefore & \int_{0}^{t_{c}} i d t
\end{align*}=I_{p} \sin \left(w_{o} t-\theta\right) /\left.w_{o}\right|_{0} ^{t_{c}}
$$

when

$$
\begin{aligned}
& t^{\prime}=t_{c}, v_{o} t_{c}=\theta \quad \text { (Equations } 2.29 \text { and 2.22) } \\
\therefore & \int_{0}^{t_{c}} i d t=I_{p} \sin \theta / w_{o}
\end{aligned}
$$

Substituting equation 2.22 in the above equation

$$
\begin{array}{rlr}
\int_{0}^{t_{c}} i d t & =I_{p} x /\left\{w_{o}\left(x^{2}+1\right\}^{\frac{1}{\}}}\right. & \\
& =I_{0} x / w_{0} & \\
& =I_{0} t_{0} x / f_{I}(x, k) \quad \text { (From equation 2.20) } & \text { (From equation 2.28) }
\end{array}
$$

Therefore average commutation thyristor current

$$
\begin{aligned}
C_{A V} & =3 f \int_{0}^{C_{i}^{c}} \dot{i} d t \\
& =3 f I_{0} t_{0} x / f_{1}(x, k)
\end{aligned}
$$

We define another quantity, for future use.

$$
\begin{align*}
f_{8}(x, k) & ={ }^{C} I_{A V} /\left(3 f I_{0} t_{0}\right) \\
& =x / I_{1}(x, k) \tag{2.39}
\end{align*}
$$

2.3.9. Power rating of auxiliary commutating supply

The power rating of the centre-tapped auxiliary supply is given by (for each half section)

$$
\mathrm{P}_{\mathrm{CA}} \quad={ }^{\mathrm{C}_{\mathrm{I}}} \mathrm{IV}_{2} / 2
$$

Substituting the value of ${ }^{C^{\prime}}{ }_{A V}$ from equation 2.39

$$
P_{C A}=3 f_{0} I_{0} V_{2} x /\left\{2 f_{1}(x, k)\right\}
$$

The power supplied by the main D.C. supply at the instant of commutation is $V_{1} I_{0}$

$$
\frac{P_{C A}}{V_{I} I_{0}}=3 f t_{0} V_{2} x /\left\{V_{1} 2 f_{1}(x, k)\right\}
$$

But

$$
\left.\begin{array}{rl}
\mathrm{V}_{2} / \mathrm{V}_{1} & =(1-\mathrm{k}) / \mathrm{k} \text { from equation } 2.18 \\
\therefore \mathrm{P}_{\mathrm{CA}} / \mathrm{V}_{1} \mathrm{I}_{0} & =3 \mathrm{ft}_{0} \mathrm{x}(1-\mathrm{k}) /\{2 \mathrm{kf} \\
1
\end{array}(\mathrm{x}, \mathrm{k})\right\},
$$

and we define auxiliary commutating supply power function (for each section)

$$
\begin{align*}
f_{9}(x, k) & =P_{C A} /\left(3 I t_{0} V_{I} I_{0}\right) \\
& =\frac{1}{2} x(I-k) /\left\{k f_{I}(x, k)\right\} \tag{2.40}
\end{align*}
$$

2.3.10 $\frac{\text { Commutation power supplied }}{\text { by the main D.C. Supply }}$

The commutation power supplied by the main D.C.
supply is given by

$$
P_{C D I} \quad=\frac{1}{2}^{C} I_{A V} V_{I}
$$

Substituting the value of ${ }^{C_{I}}{ }_{A V}$ from equation 2.39

$$
P_{C M} \quad=3 f t_{0} I_{0} V_{1} x /\left\{2 f_{I}(x, k)\right\}
$$

The power supplied by the main D.C. power source at the instant of commutation is $V_{0} I_{0}$

$$
\mathrm{P}_{\mathrm{CH}} / \mathrm{V}_{1} I_{0}=3 \mathrm{I}_{\mathrm{o}} \mathrm{x} /\left\{2 f_{1}(\mathrm{x}, \mathrm{k})\right\}
$$

and we define

$$
\begin{align*}
f_{I 0}(x, k) & =P_{C N I} /\left(3 f_{0} V_{1} I_{0}\right) \\
& =\frac{1}{2} x / f_{1}(x, k) \tag{2.41}
\end{align*}
$$

2.3.11 D.C. line clamping diode average current

The D.C. line clamping diodes carry the peak current (I_{p}) at the end of the commutation interval. As soon as the bridge thyristors are fired this current falls to ($I_{p}-I_{0}$) and decays to zero when next commutation on the same side is due.

Assuming a linear decay from ($I_{p}-I_{0}$) to zero, the average diode current

$$
\begin{aligned}
D_{I_{A V}} & =\frac{1}{2}\left(I_{p}-I_{0}\right) \\
& =\frac{1}{2} I_{0}\left(x^{2}+I\right)^{\frac{1}{2}}-\frac{1}{2} I_{0}
\end{aligned}
$$

we define

$$
\begin{align*}
f_{1 I}(x, k) & =D_{I_{A V}} / I_{0} \\
& =\frac{1}{2}\left\{\left(x^{2}+1\right)^{\frac{1}{2}}-I\right\} \tag{2.42}
\end{align*}
$$

2.4. Choice of Commutation
 Circuit Parameters

The two design independent variables for the commutation circuit are

$$
x \quad=\left\{\left(I_{p} / I_{o}\right)^{2}-1\right\}^{\frac{1}{2}} \quad \text { (Equation 2.20) }
$$

and

$$
\mathrm{k} \quad=I /\left(I+V_{2} / V_{1}\right)
$$

(Equation 2.18)
The commutation energy loss function $f_{2}(x, k)$ and the peak flux-linkage function $f_{3}(x, k)$ are dependent on the two independent variables x and k. The commutation supply voltage V_{2}, the capacitor C_{3}, the inductances I_{1}, I_{2}; for given main D.C. supply voltage V_{1}, current to be commutated I_{0}, and reverse bias time t_{0}, should be chosen so that the commutation energy loss and peak flux-linkage of the D.C. line chokes be a minima.
2.4.1. $\frac{\text { Optimization for minimum }}{\text { commutation } \varepsilon_{c} \text { for a given }}$ value of τ_{1} and T_{c}

The reverse bias time function has previously been defined

$$
\begin{aligned}
f_{1}(x, k) & =t_{0} /\left(T_{c} \tau_{1}\right)^{\frac{1}{2}} \\
& =\tan ^{-1} x-\tan ^{-1}\left[x k /\left\{1+x^{2}\left(1-k^{2}\right)\right\}^{\frac{1}{2}}\right]
\end{aligned}
$$

(Equation 2.28)

For a given value of γ_{c} and γ_{I}

$$
\begin{equation*}
\mathrm{xk} \quad=\left(\tilde{\tau}_{\mathrm{c}} / \tau_{1}\right)^{\frac{1}{2}} \tag{Equation2.21}
\end{equation*}
$$

$$
=a \text { constant } C_{1}
$$

Let $\left(r_{c} r_{1}\right)^{\frac{1}{2}}$ be another constant C_{2}
Equation 2.28 can therefore be written as

$$
\begin{align*}
f_{1}(k) & =t_{0} / C_{2} \\
& =\tan ^{-1}\left(C_{1} / k\right)-\tan ^{-1}\left[c_{1} /\left\{1+\left(c_{1} / k\right)^{2}\right.\right. \\
& \left.\left.-c_{1}{ }^{2}\right\}^{\frac{1}{2}}\right] \tag{2.43}
\end{align*}
$$

Commutation energy function $f_{2}(x, k)$, rewritten for convenience

$$
\begin{aligned}
f_{2}(x, k) & =\mathcal{E}_{0} / V_{1} I_{0} t_{0} \\
& =\frac{1}{3} x /\left\{k f_{1}(x, k)\right\}
\end{aligned}
$$

(Equation 2.34)

For given values of τ_{c} and $\tau_{1}, f_{2}(x, k)$ reduces to

$$
\begin{equation*}
f_{2}(k)=\frac{1}{2} C_{1} /\left\{k^{2} f_{1}(k)\right\} \tag{2.44}
\end{equation*}
$$

For the commutation energy to be a minimum k should be so chosen that

$$
\frac{d}{d k}\left\{_{2}(k)\right. \text { should be zero. }
$$

Therefore differentiating $f_{2}(k)$ with respect be k and equating to zero

$$
\begin{align*}
& \frac{1}{2} C_{I}\left[-2 f_{1}(k) k^{-3}+k^{-2} C_{I}\left\{I+C_{1}{ }^{2} /\left(k^{2}+C_{1}{ }^{2}-C_{I}{ }^{2} k^{2}\right)^{\frac{1}{2}}\right\} /\right. \\
& \left.\left(\mathrm{C}_{1}{ }^{2}+\mathrm{k}^{2}\right)\right] / \mathrm{f}_{\mathrm{I}}(\mathrm{k})^{2}=0 \\
& \left.\therefore \quad \mathrm{k}^{-2} \mathrm{C}_{1} \mathrm{~S}_{1}+\mathrm{C}_{I}{ }^{2} /\left(\mathrm{C}_{I}{ }^{2}+\mathrm{k}^{2}-\mathrm{C}_{I}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\} /\left(\mathrm{C}_{1}{ }^{2}+\mathrm{k}^{2}\right)=2 \mathrm{k}^{-3} \mathrm{f}_{1}(\mathrm{k}) \\
& \therefore f_{I}(k)=\mathrm{kC}_{I}\left\{I+\mathrm{C}_{I}{ }^{2} /\left(\mathrm{k}^{2}+\mathrm{C}_{1}{ }^{2}{ }_{-\mathrm{C}_{1}}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\} /\left\{2\left(\mathrm{C}_{1}{ }^{2}+\mathrm{kr}^{2}\right)\right\} \tag{2.45}
\end{align*}
$$

The above relation gives the value of the reverse bias time-function for minimum commatation energy involved.

Substituting this value of $f_{1}(k)$ in equation 2.42 the minimum value of comnutation energy function is obtained

$$
\begin{equation*}
f_{2}(k) /_{\min }=\left(C_{1}^{2}+k^{2}\right) /\left[k^{3} \cdot\left\{1+C_{1}^{2} /\left(k^{2}+C_{1}^{2}-k^{2} C_{1}^{2}\right)^{\frac{1}{2}}\right\}\right] \tag{2.46}
\end{equation*}
$$

The value of k was not calculated from equation 2.45 because the equation is of the transcendental type and because as shown in section 2.5.2. that the minimum: values of commatation energy and commutation chokes peak flux-linkage do not occur at the same value of k. Equation 2.44 was evaluated for a range of values of k for various constant values of C_{1}. This is showm in graphical form in figure 2.6. The region of interest is plotted to a larger scale in figure 2.7. The value of k for minimum commutation energy lies, for realizable values

HIGURE 2.6 INVERTOR GOMMUTATION GIRCUI DDSIGN GURVES.

of T_{1}, within the range of 0.55 to 0.7 . The "high" values of k correspond to low values of commutation line choke inductance.

For a given value of k, minimum commatation energy occurs when $C_{I}=0$ indicating that the D.C. line choke inductance is infinite. This can be verified by differentiating equation 2.46 with respect to C_{1}, equating the result to zero and evaluating the value of C_{1}. The value of k which results in a further minima can be found as follows

Under the condition of minimum commutation energy equations 2.43 and 2.45 can be written as

$$
\begin{aligned}
f_{1}(k) & =\tan ^{-1}\left(c_{1} / k\right)-\tan ^{-1}\left[c_{1} /\left\{1+\left(c_{1} / k\right)^{2}-c_{1}^{2}\right\}^{\frac{1}{2}}\right] \\
& =\frac{1}{2} k c_{1}\left\{1+c_{1}^{2} /\left(c_{1}^{2}+k^{2}-c_{1}^{2} k^{2}\right)^{\frac{1}{2}}\right\} /\left(c_{1}^{2}+k^{2}\right)
\end{aligned}
$$

or

$$
\tan ^{-I} \frac{\left[\mathrm{C}_{1} / \mathrm{k}-\mathrm{C}_{1} /\left\{1+\left(\mathrm{C}_{1} / \mathrm{k}\right)^{2}-\mathrm{C}_{1}{ }^{2}\right\}^{\frac{1}{2}}\right]}{\mathrm{k}\left\{\mathrm{C}_{1}{ }^{2}+\left(\mathrm{k}^{2}+\mathrm{C}_{1}{ }^{2}-\mathrm{C}_{1}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\}}
$$

when $\mathrm{C}_{1} \longrightarrow 0$

$$
=\frac{1}{2} \mathrm{kC}_{I}\left\{\left\{+\mathrm{C}_{1}^{2} /\left(\mathrm{C}_{1}^{2}+\mathrm{k}^{2}-\mathrm{C}_{1}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\} /\left(\mathrm{C}_{1}^{2}+\mathrm{k}^{2}\right)\right.
$$

$$
\begin{array}{r}
\mathrm{C}_{1}\left\{\left(\mathrm{k}^{2}+\mathrm{C}_{1}{ }^{2}-\mathrm{c}_{1}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}-\mathrm{k}^{2}\right\} /\left[\mathrm{k}\left\{\mathrm{C}_{1}^{2}+\left(\mathrm{k}+\mathrm{C}_{1}^{2}-\mathrm{C}_{1}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\}\right] \\
=\frac{1}{2} k \mathrm{C}_{1}\left\{1+\mathrm{C}_{1}{ }^{2} /\left(\mathrm{C}_{1}^{2}+\mathrm{k}^{2}-\mathrm{C}_{1}{ }^{2} \mathrm{k}^{2}\right)^{\frac{1}{2}}\right\} /\left(\mathrm{C}_{1}{ }^{2}+\mathrm{k}^{2}\right)
\end{array}
$$

or

$$
I /(2 k) \quad=(I-k) / k \text { or } k=0.5
$$

Complete minimum of commutation energy occurs when $C_{I}=0$, or the line choke inductance is infinity and k is 0.5 .
2.4.2. Minimization of commutation choke flux-linkage

It has been shown that the commutation choke peak flux-linkage is given by

$$
f_{3}(x, k)=\left(1+x^{2}\right)^{\frac{1}{2}} /\left\{x k f_{1}(x, k)\right\} \quad \text { (Equation 2.35) }
$$

Since

$$
\text { XIX } \quad=\left(\tau_{c} / \tau_{1}\right)^{\frac{1}{2}}
$$

(Equation 2.21)
For given value of τ_{c} and T_{I}

$$
x k \quad=a \text { constant } C_{I}
$$

Equation 2.35 can be written as

$$
\begin{equation*}
f_{3}(k)=\left\{I+\left(C_{I} / k\right)^{2}\right\}^{\frac{1}{2}} /\left\{C_{I} f_{I}(k)\right\} \tag{2.47}
\end{equation*}
$$

Minimum peak flux-Iinkage occurs when

$$
\frac{d}{d k}\left\{f_{3}(k)\right\}=0
$$

Therefore for a minima

$$
\begin{array}{r}
\left(I / C_{1}\right)\left[f_{I}(k) \frac{1}{2}\left\{I+\left(C_{1} / k\right)^{2}\right\}^{\frac{1}{2}} C_{1} 2_{k}-3(-2)-\left\{I+\left(C_{1} / k\right)^{2}\right\}^{\frac{1}{2}}\right. \\
\left.\frac{d}{d k}\left\{f_{1}(k)\right\}\right] / f_{1}^{2}(k)=0
\end{array}
$$

or

$$
\begin{aligned}
c_{1}^{2} f_{1}(k) / & {\left[k^{3}\left\{1+\left(c_{1} / k\right)^{2}\right\}^{\frac{1}{2}}\right] } \\
= & \left.\left\{1+\left(c_{1} / k\right)^{2}\right\}\left\{c_{1} / c_{1}{ }^{2}+k^{2}\right)\right\}\left\{1+c_{1}^{2} /\right. \\
& \left.\left(c_{1}^{2}+k^{2}-c_{1}{ }^{2} k^{2}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

or

$$
\begin{equation*}
f_{1}(k)=k\left\{1+c_{1}^{2} /\left(c_{1}^{2}+k^{2}-c_{1}{ }^{2} k^{2}\right)^{\frac{1}{2}}\right\} / c_{1} \tag{2.48}
\end{equation*}
$$

The minimum value of peak flux-linkage of commutation line chokes can be found by substituting equation 2.48 in equation 2.47

$$
\begin{equation*}
\left.f_{3}(k)\right|_{\min }=\left(k^{2}+c_{1}^{2}\right)^{\frac{1}{2}} /\left[k^{2}\left\{x+c_{1}^{2} /\left(c_{1}^{2}+k^{2}-C_{1}^{-2} k^{2}\right)^{\frac{1}{2}}\right\}\right] \tag{2.49}
\end{equation*}
$$

Equation 2.48 is of transcendental type, and therefore the value of k, for minimum peak flux-linkage of commutation chokes, could not be evaluated from it directly. Equation 2.47 was evaluated for a range of values of k for
various constant values of C_{1}. These are shown in graphical form in figures 2.6 and 2.7. It may be seen from these graphs that for realizable values of T_{1}, the value of k for minimum peak flux-linkage of commutation chokes, lies within the range of 0.4 to 0.5 , and that the upper values of k correspond to lower values of τ_{1}.

When C_{I} can be freely chosen the value of k for minimum commutation choke peak flux-linkage is of interest. Expressing $f_{3}(x, k)$, (Equation 2.35), as a function of C_{I} (k becomes a fixed parameter), and differentiating the function with respect to C_{I} and equating to zero, yields, for a given k, the value of C_{1} for which the peak flux-linkage of the commutation chokes is a minimum. This value of C_{1} is infinity meaning $\tau_{1}=0$ or the inductance of the D.C. line chokes is zero. This result is what could be deduced intuitively. Equation 2.48 is rewritten for minimum flux-linkage

$$
\begin{aligned}
f_{1}(k) & =\tan ^{-1} \frac{\left.\mathrm{C}_{1}\left[\mathrm{C}_{1} \hat{\{ }\left(k / \mathrm{C}_{1}\right)^{2}+1-k^{2}\right\}^{\frac{1}{2}}-k^{2}\right]}{k\left[\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{1}\left\{\left(\mathrm{k}_{1} / \mathrm{C}_{1}\right)^{2}+1-k^{2}\right\}^{\frac{1}{2}}\right]} \\
& =k\left[1+\mathrm{C}_{1}{ }^{2} /\left\{k^{2}+\mathrm{C}_{1}-\mathrm{C}_{1}{ }^{2} \mathrm{k}^{2}\right)\right\} \frac{1}{2} / \mathrm{C}_{1}
\end{aligned}
$$

or

$$
\tan ^{-1} \frac{C_{1}^{2}\left[\left\{\left(k / C_{1}\right)^{2}+1-k^{2}\right\}^{\frac{1}{2}}-\left(k / C_{1}\right)^{2}\right]}{k C_{1}^{2}\left[1+\left\{1-k^{2}+\left(k / C_{1}\right)^{2}\right\}^{\left.\frac{1}{2} / C_{1}\right]}\right.}
$$

$$
=k\left[1+C_{1} /\left\{\left(k / C_{1}\right)^{2}+1-k\right\}^{\frac{1}{2}}\right] / C_{1}
$$

when $\mathrm{C}_{1} \longrightarrow \infty$

$$
\tan ^{-1}\left\{\left(1-k^{2}\right)^{\frac{1}{2}} / k\right\}=k /\left(1-k^{2}\right)^{\frac{1}{2}}
$$

or

$$
\tan \left\{k /\left(I-k^{2}\right)^{\frac{1}{2}}\right\}=\left(1-k^{2}\right)^{\frac{1}{2}} / k
$$

The solution of the above transcendental equation yields that for optimum condition the value of k should be 0.657 when the D.C. line choke inductance is zero.
2.4.3. Choice of design variables

It is shown in sections 2.4.1. and 2.4.3. that for a given value of C_{l} the value of k for minimum commutation energy and for minimum peak flux-linkage in the commutation chokes are not the same. Further, minimum pealk fluxlinkage in the commutation chokes occurs when $k=0.657$ and $C_{1}=\infty$ (zero inductance for line chokes). On the contrary minimum commutation energy occurs when $k=0.5$ and $C_{1}=0$ (infinite inductance of line chokes). Horeover, as C_{7} is increased (i.e. line choke inductance is decreased) I_{p} is increased. This means that large capacity main and auxiliary D.C. supply reservoir capacitors C_{A}, C_{B}, C_{C} and C_{D} (Figure 2.1) are required since a large
variation of the D.C. supply voltage is unwanted. Further, large values of I_{p} are to be avoided because each capacitor has a definite current capability and, if exceeded, the capacitor bank may fail. Increase of C_{1} has further derogatory aspects in that it causes the ratings of the commutation thyristor and the auxiliary supply to be increased.

The value of C_{1} may be chosen after giving due consideration to the economics involved. As this involves market research no attempt is made here to determine the optimal value of C_{1} and k . Graphs (Figures 2.6 and 2.7) are given so that designers can have a wide range of C_{1} and k here available and can decide on the value of C_{1} and k by engineering judgement.

2.5. Capacity of Supply Reservoir

The reservoir capacitors C_{A}, C_{B} and C_{C}, C_{D} are required to supply the high current pulse during the commutation interval t_{c}. Inherent supply inductance renders the D.C. supplies unable to provide the current pulses. The capacity of these capacitons is best calculated from the amount of charge consumed during the commutation interval t_{c} and the acceptable voltage drop. Finally, the size of the capacitor should be such that it
can safely supply the peak current I_{p} at the end of the commutation interval.

The total charge required by the invertor during the commutation interval t_{c} is

$$
\begin{aligned}
Q_{C} & =\int_{0}^{t_{c}} i d t \\
& =I_{0} t_{0} x / I_{I}(x, k)
\end{aligned}
$$

(Equation 2.38)

If the acceptable voltage change is ΔV

$$
\begin{aligned}
& C \Delta V=Q_{C} \\
& C(\Delta V / V)=Q_{C} / V \\
& C=\left(Q_{C} / V\right)(V / \Delta V) \text { where } \frac{\Delta V}{V} \text { is the per unit } \\
& \text { voltage drop. }
\end{aligned}
$$

Substituting the value of Q_{C} from equation 2.38 in the above equation

$$
\begin{equation*}
\mathrm{C}=\mathrm{I}_{0} \mathrm{t}_{0} \mathrm{X}(\mathrm{~V} / \Delta \mathrm{V}) /\left\{\mathrm{Vf}_{1}(\mathrm{x}, \mathrm{k})\right\} \tag{2.50}
\end{equation*}
$$

The main supply reservoir capacitors C_{A} and C_{B} must be determined under worst case conditions, that is when the main supply voltage V_{1} and the invertor frequency are low.

On the contrary, the commutation circuit components must be calculated for the highest supply voltage $V_{工}$ at the
highest operating frequency.

CHAPTER 3

DESIGN OF THE INVERTOR

The design of the invertor may be classified as illustrated below. With reference to figure 2.1.
i) The design of the commutation circuit involving the determination of :
(a) the inductance of the D.C. Iine chokes, I_{1} and $\mathrm{I}_{2} ;$
(b) the commutation capacitor C_{3} and its voltage rating;
(c) the main and auxiliary supply voltages V_{1} and V_{2} and their ratings;
(d) the current and voltage ratings of the D.C.
line clamping diodes D_{7} and D_{8};
(e) the current and voltage ratings of the camutating thyristors Th_{7} and $\mathrm{Th}_{8} ;$
(f) the capacitance values and the voltage ratings of D.C. supply rescrvoir capacitors C_{A}, C_{B}, C_{C} and C_{D};
(g) the design of the thyristor bridge involving the determination of the voltage and current ratings of the thyristors Th_{1} to Th_{6};
(h) the design of the diode bridge involving the choice of the voltage and current ratings of the diodes D_{1} to D_{6};
(i) the protection against over-voltage and over-cureagt.

The design equations derived in chapter 2 are listed in table 3.1 for convenience.
3.1. Specification

The specification usually provides sufficient constraints for circuit design to be possible. In this project an inverter was required to supply a 110 volt (at 50 Hz , 4 pole, 3 phase, $5 \mathrm{H} . \mathrm{P}$. induction motor, with a frequency ranging from 10 Hz to 55 Hz .
3.2. Design of the Commutation Circuit
3.2.1. $\frac{\text { Choice of the main }}{\text { Supply voltage }}$

Considering the air-gap flux of the motor to be constant, the time fundamental component of supply voltage at 55 Hz ; the highest frequency of operation, must be

$$
110 \times \frac{55}{50}=121 \text { volts r.m.s. }
$$

From appendix II, section AII-4, the amplitude of the idealized line to line output voltage of the invertor领 $_{\text {INV }}$ is related to the r.m.s. value of its time fundamental

Table 3.1 COMMUTATION OIRCUIT DESIGN TABIE

Functions of Design Variables x: k	Physical Quantity Represented by the Function	Functions in Terms of Design Variables x \& k	Equation Number
Current Function x	$\left\{\left(I_{p} / I_{0}\right)^{2}-I\right\}^{\frac{1}{2}}$	X	2.20
Voltage Parameter k	$I /\left(1+V_{2} / V_{1}\right)$	$\underline{1}$	2.18
Reverse Bias Time Function $f_{1}(x, k)$	$\mathrm{w}_{0} \mathrm{t}_{0}$	$\tan ^{-1} x \tan ^{-1} \frac{k x}{\left\{1+x^{2}\left(1-k^{2}\right)\right\}^{2}}$	2.28
Commutation Energy Function $f(x, k)$	$\varepsilon_{c} /\left(V_{1} I_{0} t_{0}\right)$	$\frac{1}{2} \mathrm{x} /\left\{\mathrm{kff}_{1}(\mathrm{x}, \mathrm{k})\right\}$	2.34
Flux-linkage Function $f_{3}(x, k)$	$L_{1} I_{p} /\left(V_{1} t_{0}\right)$	$\left(1+x^{2}\right)^{\frac{1}{3}} /\left\{x k f_{1}(x, k)\right\}$	2.35
Inductance Fruction $f_{4}(x, k)$	$T_{1} / t_{0}=I_{1} I_{0} /\left(V_{1} t_{0}\right)$	$1 /\{\operatorname{xkf}(\mathrm{x}, \mathrm{k})\}$	2.30
Capacitance Function $f_{5}(x, k)$	$T_{c} / t_{0}=V_{1} C_{3} /\left(I_{0} t_{0}\right)$	$x \mathrm{lk} / \mathrm{f}_{1}(\mathrm{x}, \mathrm{k})$	2.31
Cominutating thyristor Repetative $i^{2} t$ Function $f_{6}(x, k)$	$\left(\int_{0}^{t_{c}} i^{2} d t\right) /\left(I_{0}^{2} t_{0}\right)$	$\frac{\frac{1}{2}\left\{\left(x^{2}+1\right) \tan ^{-1} x-\right\}}{f_{1}(x, k)}$	2.36
Commutating Thyristor R.M.S. Current $f_{7}(x, k)$	${ }^{0} I_{\text {RISS }} /\left\{\left(3 \mathrm{t}_{0}\right)^{\frac{1}{2}} I_{0}\right\}$	$\left\{\left(x^{2}+1\right) \tan ^{-1} \frac{x}{2 f_{1}(x, x)}\right\}^{\frac{1}{3}}$	2.37

Functions of Design Variables x \& k	Physical Quantity Represented by the Function	$\left\{\begin{array}{c} \text { Punctions in Teras } \\ \text { of Design } \\ \text { Variables } x \& k \end{array}\right.$	Fquation
Commutating			
Thyristor			
Average	$\mathrm{I}_{\text {AV }} /\left(3 f I_{0} t_{0}\right)$.	$x / f_{1}(x, k)$	2.39
$\mathrm{f}_{\mathrm{B}}(\mathrm{x}, \mathrm{k})$			
Guxiliary			
Commutating			
Supply Power	$\mathrm{P}_{\mathrm{CA}} /\left(3 \mathrm{fV} \mathrm{V}_{1} \mathrm{I}_{0} \mathrm{t}_{0}\right)$	$\frac{1}{2} x(1-k) /\left\{\mathrm{kI}_{1}(\mathrm{x}, \mathrm{k})\right\}$	2.40
$\mathrm{Ra}_{9}(\mathrm{x}, \mathrm{k})$	$\mathrm{CA}^{\prime}\left(3 \mathrm{~V}^{\prime} \mathrm{O}\right.$		
Main D.C. Supply			
Supply			
Commutation Pow Tunction	$\mathrm{P}_{\mathrm{CI}}\left(3 \pm \mathrm{V}_{1} \mathrm{I}_{0} \mathrm{t}_{0}\right)$	$\frac{1}{2} x / f_{1}(x, k)$	2.41
power Function $f_{10}(x, k)$			
D.C. Line			
Clamping Diode	$\mathrm{D}_{\text {I }}$ I	$\left\{\left(x^{2}+1\right)^{\frac{1}{2}}-1\right\}$	2.42
Average Current Function	I_{A} / I_{0}	$2\left\{(x+1)^{2}-1\right\}$	2.42
$\mathrm{f}_{11}(\mathrm{x}, \mathrm{k})$.			
Total			
Commutation		$\tan ^{-1} x$	2.29
$\begin{aligned} & \text { Time Function } \\ & f_{12}(\mathrm{x}, \mathrm{k}) \end{aligned}$	$\mathrm{w}_{0} \mathrm{c}$	tan x	2.29
Reservoir		$I_{0} t_{o} X(V / \Delta V)$	
Capacitance	$C_{A}, C_{B}, C_{C}, C_{D}$	$\frac{\mathrm{Vf}_{1}(X, k)}{}$	2.50

$\mathrm{I}_{\mathrm{V}} \mathrm{RMS}$ INV by

$$
I_{\hat{V}_{I N V}}=\pi /(6)^{\frac{1}{2}} I_{V_{1}} \text { RMS } I N V
$$

Therefore the required amplitude of the invertor output voltage is

$$
I_{V_{I N V}}=\times 121 /(6)^{\frac{1}{2}}=150 \text { volts. }
$$

Allowing for thyristor and line voltage drop, a supply voltage of 160 V would be suitable.

Hence

$$
V_{I}=160 \mathrm{~V} \text { D.C. was assumed. }
$$

As the losses in the invertor are unknown, the power rating of the main D.C. supply $P_{\text {MAIN }}$ was determined by estimating the invertor efficiency.

Assuming invertor efficiency $M_{\text {INV }}$ to be 9% and the motor efficiency H_{M} to be 80% the output power of the main D.C. supply should be

$$
\begin{aligned}
\mathbb{P}_{\text {MAIN }} & =0.746 \times \mathrm{H} . \mathrm{P} . /\left(\mathrm{m}_{\mathrm{M}} \times \mathrm{miNV}_{\mathrm{INV}}\right) \\
& =0.746 \times 5 /(0.9 \times 0.8)=5.18 \mathrm{~K}:
\end{aligned}
$$

3.2.2. $\frac{\text { Choice of auxiliary }}{\text { supply voltage }}$

The auxiliary supply voltage V_{2} depends on the choice
of the design variable k. Referring to figures 2.6 and 2.7, the value of ls was chosen to be 0.57 .

Substituting this value of k in equation 2.18 gave a value of 0.755 for the ratio of V_{2} to V_{1}. Since V_{1} is 160 volts (Section 3.2.1.) the auxiliary supply voltage V_{2} should be 120 V .

The power rating of the auxiliary commutating supply for a given value of frequency f, bridge thyristor reverse bias time t_{0} end main D.C. supply power at the instent of commutation $V_{I} I_{0}$, depends on the choico of the design variable x (Equation 2.40). The auxiliary commutating supply delivers maximum power when the operating frequency is high.

Choosing the value of x to be 1.25/0.57 from figures 2.6 and 2.7 , the value of $\mathrm{P}_{\mathrm{CA}} /\left(3 \mathrm{ft}_{\mathrm{o}} \mathrm{V}_{1} I_{\sigma}\right.$ calculated from equation 2.40 was 1.38. The highest operating frequency required was 55 Hz (Section 3.1.), the recommended bridge thyristor reverse bias time is $30 \mu s e c$ (quoted by the thyristor manufacturer) and the power supplied by the main supply at the instant of commatation was $V_{1} I_{0}=8,320$ watts (I_{o} is the D.C. link current during commutation, 52A from figure 3.1.). Using the above mentioned values the power rating of the auxiliary commtating supply was calculated from equation 2.40 to be 57 watts.

3.2.3 Commutation Efficiency

The total commutation power consists of that supplied by the auxiliary commutating supply $P_{C A}$ (see. 3.2.2.) , and that supplied by the main D.C. supply, $\mathrm{F}_{\text {Cin }}$. The values of x, k, V_{1}, I_{0}, f and t_{0} as given in section 3.2.2. when substituted in equation 2.4I. provide the value of $P_{C H}$ of 75 watt.

The total commutation power is therefore 132 watt.
D.C. power supplied to the thyristor bridge at the instant of commatation is 8,320 watt. $\left(=V_{1} I_{0}=160 \times 52\right)$.

If the comutation efficiency is defincd as the ratio of the power to be diverted from the thyristor bridge to the total power involved at the instant of commutation, then the commutation efficiency in this design is 98.2%.

3.2.4 Inductance of D.C. Iine Chokes

The inductance required for the D.C. Iine chokes was calculated by first finding the value of τ_{1}, for a given value of t_{o}, x and k from cquation 2.30. Since the "worst case" for the commatation inductance occurs when the invortor is operating at highest voltage and frequency, using the values of x, k and t_{0} as given in section 3.2.2., the value of τ_{1} was calculated to be $39.9 \times 10^{-6} \mathrm{sec}$.
τ_{1} is the ratio of the $D . C$. line choke inductance L_{1} to the dynamic input resistance $R_{i n}$ (Equation 2.17). $R_{i n}$ is the ratio of the main supply voltage V_{1} to the D.C. Iink
current I_{0} at the instant of commutation (Equation 2.14). With volt age V_{I} equal to 160 volt and I_{o} equal to 52 Ampere: I_{1} was calculatod to be $123 \mu H$. By symmetry of the commutation circuit I_{2} and I_{I} are equal.

The chokes were rated to carry a direct current of
$52 \mathrm{Amp}\left(I_{0}\right)$ and at the end of commutation period t_{c} a peak current of 126 Amp (I_{p} from equation 2.20).

The peak flux-linkage $I_{I_{1}} I_{p}$ at the end of the period t_{c} was determined from equation 2.35. Substituting tho values of $x, k_{,} V_{1}$ and $t_{o}, I_{I} I_{p}$ so calculated was 15.45 mWb-tum.
3.2.5. Choice of commutating capacitance

The commutating capacitance required can be detemined for a given value of x and k from the capacitance function $I_{5}(x, k)$ (Equation 2.31). Since the capacitance function $f_{5}(x, k)$ gives the ratio of $\cdots \tau_{c}$ to t_{0}, then knowing t_{0}, T_{c} can be calculated. $\boldsymbol{T}_{\mathrm{c}}$ is the product of the commutating capacitance C_{3} and the dynamic input resistance $R_{i n}$ at the instance of commutation (Equation 2.16) and $\mathrm{R}_{\text {in }}$ is the ratio of the main supply voltage V_{I} to the D.C. Iink current at the instant of commutation I_{o} (Equation 2.14). The"worst case" occurs when the invertor is delivering full pover at the highest frequency of operation. Using the velues of x, k, V_{I}, $I_{o} t_{0}$ wado such oporating conditions, and oquations
2.31, 2.16 and 2.14, the value of C_{3} was calculated to be $20.3 \mu \mathrm{~F}$.

The maximum voltage applied to the capacitor is
$\frac{1}{2}\left(V_{1}+V_{2}\right)$ Volt The capacitor voltage rating should therefore exceed 140 volt. It should also have a peak current rating of 126 Amp (I_{p} at the end of commutation).
3.2.6. $\frac{\text { Choice of size of supply }}{\text { reservoir capacitors }}$

The supply reservoir capacitors $C_{A}, C_{7,}, C_{0}$ and $C_{3,}$ can be determined from equation 2.48 , rewritten for convenience.

$$
c=I_{0} t_{o f_{1}} \frac{x}{(x, k)}\left(\frac{V}{\Delta V}\right)\left(\frac{1}{V}\right)
$$

(Equation 2.48)
"Worst case" for C_{A} and C_{B} occurs when the main supply voltage is a minimum. Assuming that the minimum main supply voltage is 10 volts at a minimum inverter frequency of 10 Hz , the new value of k calculated from equation 2.18 was 0.0769.

Further

$$
\begin{align*}
& \mathrm{xk}=\left(\tau_{\mathrm{c}} / \tau_{1}\right)^{\frac{1}{2}} \tag{Equation2.21}\\
& \tau_{\mathrm{c}}=\mathrm{R}_{\mathrm{in}} \mathrm{C}_{3} \tag{Equation2.16}\\
& \tau_{1}=\mathrm{C}_{3} / \mathrm{R}_{\mathrm{in}} \tag{Equation2.17}\\
& \mathrm{R}_{\mathrm{in}}=\mathrm{V}_{1} / I_{0}
\end{align*}
$$

(Equation 2.14)
$x k=V_{1}\left(C_{3} / I_{1}\right)^{\frac{1}{2}} / I_{0}$
Since C_{3}, I_{1} and I_{0} have been already fixed
$x k \propto V_{I}$
xk for lowest frequency

$$
=x k \text { for highest frequency } \frac{V_{1} \text { at low-frequency }}{{ }^{V_{1}} \text { at high-Irequency }}
$$

The new value of $x k$ so calculated was 0.078 . : Since the new value of k calculated earlier was 0.0769 , the new velue of x is 1.015.

Substituting these new values of x and k in equation 2.28, the new value of $f_{1}(x, k)$ was obtained to be 0.715 . In the limit when the main supply voltage V_{1} tends to zero, x tends to unity and $f_{1}(x, k)$ tends to 45° or 0.785 radians.

Substituting the new values of $x, k, f_{1}(x, k), V_{1}$ together with the values of I_{0}, t_{o} (section 3.2.2.) in equation 2.50 , the worst case capacity required for the main supply, can be determined provided the ratio of $\left(V_{1} / \Delta V_{1}\right)$ can be decided upon. Taking the allowable percentage change of the main supply voltage $100\left(\Delta V_{1} / V_{1}\right)$ as 5%, the main supply reservoir capacitance was calculated to be $4,440 \mu$. Since the main supply reservoir capacitor consists of two capacitors C_{A} and C_{B} in series, then $C_{A}=C_{B}=10,000 \mu F$ were used.

The main supply voltage V_{1} is impressed across these two equal valued capacitors in series and therefore the voltage rating of each of them should exceed half of the main supply voltage. The "worst case" from the voltage and current rating point of view occurs when the invertor is operating at the highest voltage and frequency. The roltage rating of these capacitors should therefore exceed 30 volts 1.C. These capacitors should also be able to supply peak currents of 12% Ampere": at the highest frequency of operation.

For the auxiliary supply reservoir capacitors C_{c} and C_{D}, the worst case occurs when the main supply voltage is at its highest corresponding to the highest frequency of operation. Using the values of $x, k, I_{0}, t_{o}, V_{2}$ given in section 3.2.2. and the allowable percentage variation of commutating supply voltage of 5%, the capacitance of the commutating supply capacitors C_{C} and C_{I} was calculated from equation 2.50 to be $I, 900 \mu \mathrm{~F}$ each. Two capacitor banks each of $2,000 \mu \mathrm{~F}$ capacity were used.

The voltage rating of each bank should be greater than $V_{2} / 2$ or 60 volts and should also be able to deliver the peak current of 126 , Anpere. at the highest frequency of operation.

3.2.7. Total commutation time

The total commation time t_{c} was obtained fron equations 2.29 and 2.5
where

$$
t_{c}=\left(I_{1} C_{3}\right)^{\frac{1}{2}} \tan ^{-1} x
$$

From section 3.25 , x at the highest frequency of operation is 2.19, and for the lowest frequency of operation it is 1.015. I_{1} and C_{3} are, from sections 3.2.4. and 3.2.5., 123 aII and 20.3 从TI.

Substituting these values in the above equation the total commation time for the highest voltage and frequency was found as 51.3 , usec, whereas that for the minimum voltage and frequency was 39.7 رusec.

The total commutation time is lower for low voltage and low frequency operation, as compared to that for high voltage and high frequency operation, if the auxiliary supply voltage and the current to be commutated remains constant.

3.2.8. Bridge thyristor reverse

 bias timeItwas advisable at this stage to check that the reverse bias times t_{0} for both highest frequency-highest voltage, and lowest frequency-lowest voltage operation were acceptable.

The reverse bias time t_{0} from equations 2.28 and 2.5
is

$$
t_{0}=\left(L_{1} C_{3}\right)^{\frac{1}{2}} f_{1}(x, k)
$$

In section 3.26 it has been shown that $f_{1}(x, k)$ is 0.6 at the hichest voltage and irequency, and that at the lowest voltage and frequency it is 0.715 .

For highest frequency of operation, t_{0} is theropore $30 \mu \mathrm{sec}$, and for the lowest frequency of operation is 35.8 $\mu \mathrm{sec}$.

Unlike the total commatation time t_{c}, the reverse bias time t_{0} increases as the voltagc and frequency decreases, if all other conditions remained the same.

3.2.9. Choice of commutating thyristors

The commutating thyristors, Th_{7} and Th_{8}, undergo the "worst case" condition when the invertor is operating with full main supply voltage at the highest operating frequency.

The r.m.s., and average current of these thyristors can be determined from equation 2.37 and equation, 2.39. The $i^{2} t$ value of the thyristors can be also determined from equation 2.36.

Substituting the values of x, k, I_{0}, f and t_{0} given in section 3.2.2. in the above equations, the various ratings pertaining to current flow were caloulated and are listed below :-

$$
\text { Tr.s. current }=7.08 \text { Ampere }
$$

$$
\begin{aligned}
& \text { Average current }=0.942 \text { Ampere } \\
& i^{2} t \text { value }=0.302 \mathrm{~A}^{2}-\mathrm{sec} \\
& \text { Peak current } I_{p}=126 \text { Ampere } \\
& \text { Conduction time } t_{c}=57.3 \mu \mathrm{sec} .
\end{aligned}
$$

The voltage rating of the commutating thyristors was determined as follows. Referring to figure 2.1, immediately prior to the end of commatation period, with thyristor Th_{7} in conduction, the potential of the point X becomes $\frac{1}{2} V_{1}$ volt, causing the potential of the point m to be $\frac{1}{2}\left(V_{1}+V_{2}\right)$ volt.

During this period the diodes D_{1} and D_{3}, along with thyristor T_{2}, are in conduction, causing the voltage across the $R \& B$, and $Y \& B$ terminais of the load to appear across the choke I_{2}. Due to the highly inductive nature of the induction motor-load tinis voltage is very nearly equal to the main D.C. supply V_{I} (a condition set during the period when $T h_{1}, T h_{2}$ and $T h_{3}$ are conducting).

The potential of the point U is then at $1.5 V_{1}$ volt. The forward voltage which the thyristor $T h 8$ has to block is $\left(2 V_{1}+V_{2}\right)$ volt.

Taking a safety factor of 20% to allow for mpredictable transient over-voltage, the forvard blockinc voltage rating of the commatation thyristors Th_{7} and Th_{8} should be 530 volt.

From figure 2.1 it can be seen that no significant reverse voltage is applied to the comutation thyristors.

3.2.10 Choice of D.C. line diodes

The reverse voltage rating of the J.C. line diodes D_{7} and D_{8} was determined from the consideration that at the instant, say, of positive line commatation the point X drops to a potential of $-\left(\frac{3}{2} V_{1}+V_{2}\right)$ volt. The cathode of D_{7} being held at $\frac{1}{2} V_{1}$ volt, the diode D_{7} is reversed biased by $\left(V_{1}+V_{2}\right)$ volt.

Substituting numerical values of V_{1} and V_{2} the D.C. line diodes D_{7} and D_{8} are reverse biased by 280 volt at the instant of commutation. Using a 20% factor of safety against any unpredictable transient over voltage, the reverse voltage rating of the D.C. line diodes D_{7} and D_{8} should therefore be equal or exceed 336 volt.

The average current through the diodes D_{7} and D_{8} can be calculated from equation 2.42. Substituting the value of the design variable $x(=2.19)$ chosen in section 3.2.2. in the equation 2.42 the ratio of average value of the diode current ${ }^{D_{I_{A V}}}$ to the current at the instant of commutation $I_{0}(=52$ Ampere, section 3.2.2.) was calculated to be 0.71 . From this average current rating of the diodes D_{7} and D_{8} was deterained as 37 Ampere. The peak current through the diodes is the difference between the peak current reached in
the D.C. line chokes at the end of commutation $I_{p}(=126$ Ampere) and $I_{0^{\circ}}$ This yielded the peak diode current as 74 Ampere.

3.3. Design of Thyristor Bridge

The design of the thyristor bridge involves the determination of the voltage ratings and current ratings of the bridge thyristors Th_{1} to Th_{6}.

3.3.1. Voltage ratings of bridge thyristors

The reverse voltage rating of the thyristors must be determined for the instant of commutation as explained below. Supposing thyristors 1,2 , and 3 are conducting (Figure 2.1) then triggering of thyristor $T h_{7}$ would cause the potential of the point X to fall to $-\left(\frac{1}{2} V_{1}+V_{2}\right)$ volt as shown in figure 2.5. The complenentary diodes D_{1} and D_{3} would start conducting to maintain current continuity in the R and Y lines of the output. This would cause the cathodes of thyristors T_{1} and $T h_{3}$ to be clemped at $-\frac{1}{2} V_{I}$ volt, thereby causing the above thyristors to be reversed biased by $-\left(\frac{1}{2} V_{1}+V_{2}\right)-\left(-\frac{1}{2} V_{1}\right)=-V_{2}$ volt.

The forvard blocking voltage rating of the bridge thyristors is determined by considering the interval during which the thyristors $\mathrm{Th}_{1}, \mathrm{Th}_{2}$, and $T h_{3}$ are conducting. Thyristors $T h_{4}, T h_{6}$ and $T h_{5}$ would then block the forvard voltage of V_{1} volt.

Since the main supply voltage V_{1} is 160 volt, the bridge thyristors would need to block a forvard voltage of 160 volt. Allowing a factor of safety of 20% the forward voltage blocking capability of the bridge thyristors should therefore equal or exceed 192 volt.

3.3.2. Current ratings of bridge thyristors

The calculation of the current ratings of the bridge thyristors is rather involved. Time domain analysis given in chapter 7 shows that although the sum of the conduction angles of the bridge thyristor and their complementary diode is always 180°, the conduction angles of the thyristors and that for the complementary diodes vary individually in accordance with the loading of the motor. With higher motor slip the angle of conduction of the bridge thyristor is also greater.

The worst case, from a current conduction point of viow, occurs when the machine is at standstill with the supply voltage and frequency adjusted to maintain the fundamental component of air-gap flux at its rated value. Digital computer analysis under these conditions give the following results.

Machine terminal condition :-

Invertor-fed stator line to line peak voltage $I_{\hat{V}_{\text {INV }}}=15.3 \mathrm{volt}$

Invertor-fed stator line to line time fundamental romes. voltage

$$
\mathrm{I}_{\mathrm{V}}^{\mathrm{RIMTS}} \mathrm{INV}=11.9 \mathrm{volt}
$$

Invertor-fed supply frequency $=4 \mathrm{~Hz}$

Invertor-fed roans. value of stator line current $=33.8$ Ampero

Bridge thyristor condition:-

Average bridge thyristor current	$=14.9$ Ampere
R.M.S. bridge thyristor current	$=24.0$ Ampere
Peak bridge thyristor current	$=52.0$ Ampere
Bridge thyristor conduction angle	$=167.45^{\circ}$
Bridge thyristor $i^{2} t$	$=143.45 \mathrm{~A}^{2}-\mathrm{sec}$.

Complementary diode conditions :-

$$
\begin{aligned}
& \text { Bridge diode average current }=0.486 \text { Ampere } \\
& \text { Bridge diode ramos. current }=3.3 \text { Ampere }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Bridge diode peak current } & =31.9 \text { Ampere } \\
\text { Bridge diode } i^{2} t & =2.8 \mathrm{~A}^{2}-\mathrm{sec} \\
\text { Bridge diode conduction angle } & =12.55^{\circ}
\end{array}
$$

The wave-form of the stator R-phase line current under these conditions was calculated and shown in figure 3.1(a). The thyristors used in the bridge were chosen to be of hicher current rating than required as the invertor was experinental.

3.4 Design of Diode Bridge

In a similar manner to the design of thyristor bridge, the design of the complementary diode bridge consists of determination of voltage rating and current rating of the diodes.

3.4.1 Voltage rating of bridge diodes

The reverse voltage rating of the complementary diodes was established in the following manner.

Considering that the bridge thyristors $\mathrm{Th}_{1}, \mathrm{Th}_{2}$ and $T h_{3}$ are conducting, and the instant when thyristor Th_{7} is gated in order to switch off the thyristors Th_{1} and Th_{3}, the potertial of point X folls to $-\left(\frac{1}{2} V_{1}+V_{2}\right)$ volt. The thyristor $T h_{7}$ then diverts the current from flowing through thyristors Th_{1} and Th_{3} 。

This curront starvation does not causc thesc bridge thyristors to be switched off at once. Only when the charge storod in thesc thyristors is romoved (accolorated by reverse biasing) will the off condition be attained. Honcc, as soon os thyristor $T h_{7}$ is gated the potential of the cathodes of thyristors $T h_{1}$ and $T h_{3}$, and hence anodos of the diodes D_{4} and D_{6} bocomes $-\left(\frac{1}{2} V_{1}+V_{2}\right)$ volt. The continuity of current in the R and Y leads of the load demands an immediatc flow of current through the diodes D_{1} and D_{3}. This demand of current is initially mot by the flow of charge in the diodes D_{1}, D_{3}. Since the cathodes of the diodes D_{4} and D_{6} are at a potential of $\frac{1}{2} V_{1}$ and the anodes of the diodes D_{1} and D_{3} are at a potential of $-\frac{1}{2} V_{1}$, the diodes D_{4} and D_{6} are reversed biascd by $\left(V_{1}+V_{2}\right)$ volt, wheroas the diodes D_{1} and D_{3} are formard biasod by V_{2} volt. This forward biasing of diodes D_{1} and D_{3} causes accelcrated injection of charge and rapidly switches tinem into the conduction mode, thereby making the currents through the R and Y terminals of the load to be of conduction type. Once the diodes D_{1} and D_{3} are in conduction the cathodes of thyristors Th_{1} and Th_{3} are clamped at $-\frac{1}{2} \mathrm{~V}_{1}$ volt. Sinen the point X is at a potontial of $-\left(\frac{1}{2} V_{1}+V_{2}\right)$ volt, thesc thyristors $T h_{1}$ and $T h_{2}$ are reversed biased by V_{2} volt and switch off. Under this condition, neglecting the forvard voltage drops in the diodes, D_{1} and D_{3} have no voltage across their torminals, whereas diodes D_{4} and D_{6} are reversed biased
by V_{1} Volt.
Since the main supply voltage V_{1} is 160 Volt and the auxiliary supply voltage V_{2} is 120 Volt , the complementary bridge diodes are reversed, -biased by 280 Volt. Using a safety factor of 20% the reverse voltage rating of these diodes should therefore be equal to or exceed 336 Volt.

3.4.2 Gurrent ratings of bridge diodes

The worst cese, for the bridge diodes, from current conduction point of view is considered to occur when the machine is running at super-synchronous speed with unity slip, the supply voltage and frequency adjusted to maintain the fundamental component of air-gap flux at its rated value.

Analysis on a digital computer based on the theory developed in chapter 7 yielded the following results.

Machine conditions:-

Invertor-fed stator line to line peak voltage

$$
I_{\hat{V}_{\text {INV }}}^{\hat{n}}=5.75 \mathrm{VoIt}
$$

Invertor-fed stator line to line time fundamentel r.m.s. voltage

$$
I_{V_{1 ~ I N V ~}^{R I N S}}=4.47 \mathrm{Volt}
$$

R.M.S. valne of stator line current

$$
=33.3 \text { Ainpere }
$$

Supply frequency $=4$ Hertz

Bridge thyristor conditions :-

Average bridge thyristor current $=4.6$ Ampere
R.M.S. bridge thyristor current $=23.6$ Ampere

Peak bridge thyristor current $=49.3$ Ampere

Bridge thyristor conduction angle $=69.068$
Bridge thyristor $i^{2} t=139.287 A^{2}-$ sec.

Bridge diode conditions :-

Bridge diode average current	$=10.3$ Ampere
Bridge diode r.m.s. current	$=20.20$ Ampere
Bridge diode peak current	$=49.3$ Anpere
Bridge diode $i^{2} t$	$=101.64^{2}-\mathrm{sec}$.
Bridge diode conduction angle	$=110.932^{\circ}$

The wave-form of the stator R-phese line current under these conditions was calculated and shown in figure 3.1(b).

3.5 Protection of Invertor 2.3.4

Since the semi-conductor switches used in the invertor are very susceptible to over-voltage and over-current, even of very short duration, any protection scheme used should be extremely fast acting.

It is possible to make an invertor "fail safe" by monitering currents and voltages at various strategic points in the sircuit and feeding the signal to an electronic controller which in turn controls the gating signals. Since such "fail safe" systems are complex, time consuming to design, costly and not required for an experimental invertor, simple protective schemes were used.

3.5.1 Transient over-voltage protection
 Transient over-voltage protection was achieved by

 shunting each thyristor with a series circuit consisting of a $2, \mu F$ capacitor and a 5Ω resistor. The capacitor limits the short duration voltage transients at the thyristor and the 5Ω resistor limits the capacitor aischarge current when the thyristor turns on.
3.5.2 Over-current protection

High-speed fuses were used to protect the thyristor from over-current, the $i^{2} t$ rating of fuse and thyristor being correctly matched.
(

> To By-poss
> Thyristor Gote

To Invertor Diode Bridge

Legend:-

1. Over-current Detector Unit (Figure 3.3)
2. Shunr
3. Crow-bar Actuating Coil
4. Crow-bar

Figure 3.2 Inverior Overcurrent Proiection By Electronic Crow-bar.

Figure 3.3 Electronic Sircuit For Invertor Over-Current Protection.

No protection other than over-voltage protection was used for the diodes. Fuses were not used in series with the diodes. This is because, if due to any reason these diode fuses blow, excessive voltage would develop across the thyristors due to lack of feed-back path of energy stored in the load.

High-speed fuses were used in series with the D.C. supplies as well as at the three-phase output of the invertor to provide overall protection. These fuses were properly co-ordinated with the individual cell fuses.

Additional over-current protection by means of electronic "crow-bar" and by-pass thyristors was also used (Figure 3.2). The electronic circuit (Figure 3.3) monitors the invertor supply current and trigeers the by-pass thyristor when a pre-set current level is exceeded. The by-pass thyristor places a short circuit across the invertor main supply terminals and diverts the short circuit current away from the invertor. Under such conditions the whole main supply voltage appoers across the low impedence "crowbari actuating coil, causing a rapid build-up of current in it. This rapid current build-up causes fast opening of the switch. Since the by-pass thyristor is normally in the non-conducting state, when called upon con handle a heavy surge current without dimage.

CHAPTER 4

THE INDUCIION MOTOR AND

EXPERIMENTAL DETERMTNATIOM
OT EQUIVALETT CIRCUIT
PARAMETERS

4.1 Design Details of the Induction Motor

The induction motor used throughout the investigation had the following design details :-
B.T.H. motor M.Z. 3519

Serial Number 48929-H
5 II.P., 4 Fole, llo Volt, $50 \mathrm{~Hz}, 3$-Phase

Stator Double layer lap Double layer lap

Number of slots 36
Number of slots 36
Pitch of the windings \%
Pitch of the windings slots

Number of coils
Tums per coil (Total)
Wires in parallel
Tums per coil (effective)
Wire diameter (bare) 0.048 inch
0.056 inch
" " " (covered) 0.051 inch 0.059 inch
"
insulation
Levmex
Lewmex

Mean length of turn
Circuits in parallel 1
Turns in series per phase 99
Connection of phases
Insulation class
Resistance at $20^{\circ} \quad 0.215 \Omega$ Centigrade per phase

23 inch
Δ
A

18 inch

1

104
$.0 .260 \Omega$
$1 \quad 1.2 \times 0.19 \times 0.44^{11}$

Stator slot

Rotor slot
4.2 Conventional Constant Frequency Equivalent Circuit

A conventional equivalent circuit representation of an asynchronous machine under fixed frequency sinusoidal excitation is shown in figure 4.1 This equivalent circuit refers to one phase of a star connected (or an equivalent star connected machine; the voltages shown are line to noutral. voltages, and the currents are line current. The various parameters of the equivalent circuit are
$R_{I}=$ Stator resistance
$R_{2}=$ Rotor resistance referred to stator

Figure 4.1 Simple Equivalent Circuit Of Induction Motor Supplied From Fixed Frequency Sinusoidal Source. (Values In The Parenthesis Refer To Normal Voltage, Normal Frequency Operation)

$$
\begin{aligned}
& X_{\text {If }}=\text { Stator leakage reactance at frequency } f \\
& X_{2 f}=\begin{array}{c}
\text { Rotor leakace reactance, referred to stator, } \\
\text { at fequency } f
\end{array} \\
& \begin{array}{c}
X_{\text {Mf }}=\quad \text { Magnetizing reactance for space fundanental } \\
\text { of air-gap maf at frequency } f
\end{array} \\
& \mathrm{R}_{\mathrm{Mf}}=\text { Iron loss, (in the main flux path) simulating } \\
& \text { resistance at frequency } f
\end{aligned}
$$

Except for R_{1}, the above parameters are not constant cven over the full range of operation for a given supply voltage and frequency. The Ieakage reactances $X_{I f}$ and $X_{2 f}$ depend on the leakage path saturation and are functions of lood curront. The nagnetizing reactance $X_{\text {iff }}$ depends on main flux path saturation。

With varying supply voltages the magnitude of the main flux varies and also the stator luakge impedance drop, so that $X_{\text {inf }}$ depends on the stator current, but to a smaller degree than do $X_{\text {If }}$ and $X_{2 f}$. The rotor resistance, E_{2}, may undergo skin effect changes with the frequency or induced rotor emf, and hence depends on rotor speed. Under normal operating conditions the rotor speed does not vary appreciably, so that the variation of Ω_{2} is amall. . Wie core-loss simulating resistance $R_{\text {Me }}$ depends on the mount of core-loss and thercfore on the air-gap voltage $\mathbb{E}_{\text {ge }}$. The stator leakage impedance is small compared to the magnetizing
imperance so that the air-gap voltage does not vary appreciably with load and $\mathbb{R}_{\text {If }}$ may be considered constant over the range of normal operation.

Variable frequency (sinusoidal) no load test, with various supply voltages, and frequencies, were carried out in order to determine tho variation of R_{Mi} and X_{MI} with supply voltage and frequency.

Variable frequency (sinusoidal) locked rotor test were carriod out for several values of stator line current and supply frequency. This yielded the variation of ($X_{\text {If }}$ - $X_{2 f}$) and R_{2} as a function of lood current for different supply frequencies.
R_{2} vas determined by passing dircot current through the stator winding and measuring the voltage drop across it (Figure 4.2).

4.3 Variable Frequency Mo-load Test

Tho experimental set-up vas as shown in figure 4.3. For accurate determination of supply frequency a digital tachometer was used to moniter the altemator speod from which the supply frequency was computed from the formula $f=\frac{P N}{120}$ where f is the suprly frequency, P the number of altorinator poles, and \mathbb{N} the speed of the alternator rotor in R.P. N_{N}. Since trac no-load condition demanded that the slip of the induction motor rotor be zero, the induction motor rotor was driven by a D.C. machine which, under this condition, vould

FIGURE A. 2 STATOR AND ROTOR RESISTANCE PER PHASE (D.CL) LIEQUNALENL STARL

Figure 4.3. Experimental Set-Up Used In The Investigation.
supply the windage and friction of the induction and D.C. motor combination including the rotational iron losses occurring in the teeth and on the surface of the stators and rotors. (Full details are given in Chapter 5.) In order to ascestain whether the induction motor was running at synchronous speed, the rotor speed was also monitered by anothor digital tachometer. Those digital tachometers had an accuracy of $\pm I$ R.P.M. It was found that the D.C. machine was unable to maintain the synchronous speed within ± 1 R.P.II. continuously and so readings for the three statorline currents and for the stator porrer input were taken just above synchronous speed and just bolow synchronous speed. The input current and the input power to the stator for the true no-load condition at synchronous speod were then interpolated from thesc sets of roadings.

At synchronism, the slip S of the rotor is zero. From the simple equivalent circuit of figure 4.1 it can be seon that unacr this condition $\frac{\mathrm{R}_{2}}{\mathrm{~S}}=\infty$, and the rotor may be considered to be open circuit. The power input to the stator winding consists of the main flux path iron loss and stator copper loss. The rotational iron loss is supplied by the D.C. machine and not by tho alternating supply to the induction motor. The D.C. machine also supplied the windage and friction losses of the induction and D.C. motor combination.

Net power input $P_{i n}$ to the stator under no-load condition is given by

$$
\begin{equation*}
\mathrm{NI}_{\mathrm{P}_{\text {in }}}=3 \mathrm{I}_{\mathrm{NL}}{ }^{2} \mathrm{R}_{1}+\mathrm{P}_{\mathrm{h}+\mathrm{c}} \tag{4.1}
\end{equation*}
$$

where $I_{\text {ifnI }}$ is the stator-Iine current at synchronous speed
P_{h+c} is the hysteresis and eddy current loss in the main flux path

The stator resistance R_{1} being know, P_{h+c} were determined from the above equation 4.I.

The line to neutral air-gap voltage E_{gf} at frequency f induced in the stator winding by the main flux at no-load is given by

$$
\begin{align*}
E_{g f} & =V_{N L}-I_{\mathrm{NIL}}\left(R_{I}+j X_{I f}\right) \\
& =V_{\mathrm{NI}}-I_{\mathrm{GII}} X_{I f} \tag{4.2}
\end{align*}
$$

where $V_{N L}$ is the no-load line to neutral voltage of the :",aton supply.

The stator Icckage reactance $X_{\text {If }}$ was determined from the locked rotor test for a rotor current of $I_{N i L}$ Ampere.

Knowing E_{gf}, the magnetizing impedance elements, $X_{\text {Me }}$ and $R_{\text {Mf }}$ of the equivalent circuit (Figure 4.I) were determined as follows

$$
R_{M f}=\frac{3 E_{g f}}{P_{h+e}}
$$

and

$$
\begin{equation*}
X_{\mathrm{MI}}=\frac{\mathrm{E}_{\mathrm{gf}}}{\mathrm{I}_{\mathrm{NL}} \sin _{\mathrm{IVI}}} \tag{4.4}
\end{equation*}
$$

where $f_{\text {NI }}$ is the anglo by which tho no-load current lags the air-gap voltage $E_{g f}$. This is very nearly equal to the angle by which the no-load current $I_{\text {rIf }}$ lags bchind the stator supply voltage V_{f} becarso the stator loakage impodence is small compared with the magnetizing impedance.

A family of curvos for R_{MI} and X_{mi} as functions of the supply voltage V_{f} for various constant supply frequoncios are shown in figures 4.4 and 4.5. In order to examine the bchaviour of R_{Mf} and X_{Mf} as functions of supply frequency onother two graphs wowe dravm to the base of frequency for various constant values of V_{f} / f (Tigures 4.6 and 4.7). For the frequoncy ronge considered and for any fixed air-gap flux, both $X_{\text {Mf }}$ and $R_{\text {MI }}$ are Iincar functions of frequency. The Incar variation of R_{Nf} with frequoncy, indicates that the iron loss in the main flux-path was mainly due to hystoresis. For an air-gap flux corresponding to 2 volt/ Hz (taken to bo the working air-gop flux in this investigation), the value of $R_{\text {Mi }}$ and $X_{\text {Mf }}$ at 50 Hz wore 46Ω and 6.14Ω respectively. These values vero taken for the equivalent circuit "constants". The variation of magnetizing reactance at 50 Hz with main fluxppath saturation is shown in figure 4.8.

 vqltase ý for varlúgs fixad yalues of frequency.

FIGURE 4.6 CORE LOSS A ALOUGE R VS SUPPLYTFREQUENCYT FOR VARIOUS constant values of v́l RATIQ.

4.4 Variable Frequency Iockod Rotor Test

The samo cxperimental set-up as used for no-load test (Figure 4.3) was used in this test. The rotor vos locked in such a position that the three stator-line curronts wero almost equal. Reduced voltagos vere applied to the stator at various constant frequencies in order to circulate currents in the stator from an almost negligible value up to 10% in oxcess of rated full load current. Simultancous recordings of stator line to line voltages, stator-line currents and porrer input were made.

At stondstill the slip S of the rotor is unity and hence the input impodanco (linc to noutral) of the motor consisted of a parallel combinotion of the stator-reflected rotor leakage impedance $\left(\mathrm{R}_{2}+j \mathrm{X}_{2 f}\right)$ and the shunt magnetizing impedance $1 /\left(\frac{l}{R_{\operatorname{MI}}}+\frac{1}{\bar{X}_{\mathrm{Mf}}}\right)$ in serics with tho stator leakage impedonce $\left(R_{1}+j X_{1 f}\right)$. Since tho shunt magnetiaing impedonco is vory high compared to the rotor leakage impodance $\left(R_{2}+j X_{2 f}\right)$, the input impedance of the motor may be consiacred to be approximately cqual to $\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)+\dot{j}\left(\mathrm{X}_{1 \mathrm{f}}+\mathrm{X}_{2 \mathrm{f}}\right)$. Further, since the air-gap voltage $\mathbb{I}_{g f}$ is very small, about half of the lockod rotor supply voltage to the stator (for wound rotor machine) the air-gap flux is correspondingly small, and hence the losses in the main flux wath are also small. Moreover, since the rotor is stationary the lossos
associated with the rotor rotation, viz friction and windage, teeth and surface losses of the rotor and stator are zero. Therefore, with the assumption of negligible iron loss in the main flux-path the equivalent circuit under such condition is as given in figure 4.1 with R Riff omitted. The input impedance for locked rotor condition is obtained from the equivalent circuit as

$$
\begin{align*}
& \frac{V_{b I}}{I_{b I}}=Z_{b I}=\left\{\mathrm{R}_{1}+\right. \\
&\left.+\frac{\mathrm{X}_{\mathrm{Mf}} \mathrm{R}_{2}\left(\mathrm{X}_{\mathrm{Mf}}+\mathrm{R}_{2}\right)-\mathrm{R}_{2} \mathrm{X}_{2 \mathrm{I}} \mathrm{X}_{\mathrm{IIf}}}{\mathrm{R}_{2}^{2}+\left(\mathrm{X}_{\mathrm{Mf}}+\mathrm{X}_{2 f}\right)^{2}}\right\} \\
&+j\left\{\mathrm{X}_{1 f}+\frac{\mathrm{X}_{\mathrm{Mf}} \mathrm{X}_{2 f}\left(\mathrm{X}_{\mathrm{Mf}}+\mathrm{X}_{2 f}\right)-\mathrm{X}_{\mathrm{MI}} \mathrm{R}_{2}^{2}}{\mathrm{R}_{2}^{2}+\left(\mathrm{X}_{\mathrm{MI}}+\mathrm{X}_{2 f}\right)^{2}}\right\} \tag{4.5}\\
&= \mathrm{R}_{\mathrm{blf}}+j \mathrm{X}_{\mathrm{blf}}
\end{align*}
$$

For motors of normal design $X_{2 p}$ and R_{2} are very small compared to X_{MP} numerically. Under the locked rotor condition $X_{\text {Mi }}$ has the unsaturated value.

Therefore

$$
\begin{equation*}
R_{b I f}=R_{l}+R_{2} \frac{X_{M f}{ }^{2}}{\left(\mathrm{~K}_{\mathrm{Mf}}+\mathrm{X}_{2 f}\right)^{2}} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{b 1 f}=X_{1 f}+X_{2 f} \frac{X_{M I f}^{2}}{\left(X_{M I}+X_{2 f}\right)^{2}} \tag{4.7}
\end{equation*}
$$

From test data of the locked rotor stator line current
$I_{b I}$, the locked rotor stator power input i $P_{b I}$ and the locked.
rotor line to neutral supply voltage $V_{b l}, \mathrm{R}_{\mathrm{blf}}$ and $\mathrm{X}_{\mathrm{blf}}$ woro calculatod as follows :-

$$
\begin{equation*}
\because_{\mathrm{bIf}}=\frac{P_{\mathrm{bl}}}{3 I_{\mathrm{bl}}^{2}} \tag{4,8}
\end{equation*}
$$

and

$$
\begin{align*}
& Z_{b l f}=\frac{V_{b l}}{I_{b l}} \tag{4.9}\\
& x_{b l f}=\left(z_{b l f^{2}-R_{b l f}}\right)^{\frac{1}{2}} \tag{4.10}
\end{align*}
$$

Although it is legitimato to negloct the core-loss under locked rotor conditions, it is not quite so for locked rotor magnotizing current duc to the prosence of a finito air-gap in the flux path. Therefore a suitable correction factor should bo applicd to $\mathrm{R}_{\mathrm{blf}}$ and $\mathrm{X}_{\mathrm{blf}}$ in order to determine the precise valuc of R_{2} and $\mathrm{X}_{2 \mathrm{f}}$. Since the loakage reactances of stator and rotor could not be determined individually from these tests, the stator and rotor leakage reactances wore ompiricolly taken to be cqual to each othor following the usual text-book procedure ${ }^{10}$. Further, from equation 4.7 it con be seen that if $X_{\text {iff }}$ is very high $X_{b l f}=$ $X_{\text {If }}+X_{2 f}$ No attempt was made to apply a correction to $X_{b l f}$ for the non-infinite value of $X_{\text {Mf }}$ becausc of two roasons. The first was that an ompirical distribution of leakago roactonces had boen assumed and second was the fact that
under normal oporating conditions $R_{2} / S>X_{21}$ and as such it is R_{2} which primorily dotermines the rotor curront and honec the stator curront and the terque developed und or nomel operatifg conditions. Therofore R_{2} requirod moro accurato dotermination than $X_{2 f}$. Hence it was assumed that

$$
\begin{equation*}
X_{I f}=X_{2 f}=\frac{X_{b I f}}{2} \tag{4.11}
\end{equation*}
$$

The value of $\mathrm{X}_{\text {If }}$ at the no-load value of the stotor current was used in the no-load tost to detcrmine $X_{\text {rif }}$ and $\mathrm{R}_{\text {Mf }}$ 。 Tho unsaturatod value of $\mathrm{X}_{\text {Mf }}$ obtainod from figure 4.8 was uscd to colculate the actual valuc of R_{2} from equation 4.6.

$$
\begin{equation*}
R_{2}=\left(R_{b I f}-R_{1}\right)\left(\frac{X_{\mathrm{Mf}}+X_{2 I}}{X_{M f}}\right)^{2} \tag{4.12}
\end{equation*}
$$

It was noticed that the rotor frequency had a negligible effect on R_{2} as should the case be for mown rotor contruetion. The variation of R_{2} with stator current is show in figure 4.9, and is perhaps due to the effective resistanco of the carbon brushes on the slip-rings. As the equivalont circuit was required to simulato the behoviour of the induction motor from no-load to full-load. (30 Ampore), the value of R_{2} at 30 Ampore: (0.13Ω) was taken.

The volue of the locked rotor rocetance $X_{b l e}=$ $\left(X_{I f}+X_{2 f}\right)$ was plotted as a function of stator current for various constont values of supply froquoncy os shom in
figure 4.10. From this another groph, figure 4.11, mas plotted to depict the variation of $\mathrm{K}_{\mathrm{blf}}$ as a function of supply froguency for various constant values of stator curront. Variation of locked rotor inductance ($1_{1}+1_{2}$) with stator current was detormined from this graph and plottod in figure 4.12. The loakage inductance was found to have o. rather wide variation with stator curront duc to saturation of the iron in tho leakage flux-path, which is usually moro pronouncod in a wound rotor machine thon in an equivalont coge machinc. The value of $X_{b l f}=\left(X_{1 f}+X_{2 f}\right)$ was taken as 0.55Ω at 50 Hz for a stator current of 32 Amporc , becausc at theso higher values of stator current $X_{2 f}$ tonds to havo an effect on the rotor circuit. At low values of slip, $X_{2 f}$ is swamped out by a much higher value of tho offoctive rotor resistance $\mathrm{R}_{2} / \mathrm{S}$.

FIGURE 4. 10 locikid rotor infut reactance x. VS Stator line current FOR VARIOUS CONSTANT VALUES BUF STATOR SUPPLY FREQUENCY I.

> IMDUCTION MOTOR LOSSES
> UTMER TIXED AID VARIABLE
> TREQUENCY SIMUSOIDAL SUPPLY

In the process of energy conversion, from electrical to mechanical form in an induction motor five different kinds of loss oceur. These are :-
i) stator copper loss due to load current flowing through the stator winding;
ii) iron loss due to the main flux. This iron loss is mainly confined to the stator iron, as under normal operation the rotor is subjected to a very low slipfrequency Il ux reversal;
iii) rotor copper loss due to current flowing through the rotor winding. The rotor current consists of a slipfrequency current induced by the fundamental component of stepped space distribution of air-gap flux and various other currents of higher slip-irequency contwibuted by the higher order space harmonics of the air-gap mmf;
iv) losses associated with the rotation of rotor which includes, apart from the friction and vindage, the losses due to slot openings and stator and rotor surface losses.

The above-mentioned losses occur in any induction motor, i.e. either wound or cage rotor machine, but in the
lattcr type a further loss of cnergy occurs die to :-
v) cross-currents flowing between the minswlated
rotor bers via rotor iron.
Losses of types (i) and (ii) and a major part of (iii) contributed by the space fundamontal of air-gap mmf can be token into account by the conventional simple equivalent circuit of figure 4.1. The rest of the losses under type (iii) created by the harmonics of the air-gap mmf can also be token into accomt by extending the simple equivalent circuit into a chain network shom in fisure 5.l, the details of which will be presented in section 5.3.2. The paraneters of these space harmonic branches could be calculatod by assuming that the iron is unsaturated. Even if the main flux-path is unsaturated the tooth tips of the stator and the rotor are heavily saturated and as such the calculated volues assuming unsaturated iron are, of doubtful value. Various authors $7,7 l$ have suggested the use of various reduction factors empirically to counteract the effect of such heavy saturation. Losses of type (iv) are the most difficult to account for. Christofides ${ }^{11}$ has shown how these losses could be accounted, but no attempt is made here to account for these losses. The lusses due to interbar currents (v) are peouliar to squirrel-cage induction motor with cast aluminiun rotors. Since the machine uscd throughout the investigation was of the wound rotor type, no attenpt was
made to investigate these types of losses.

5.1 Lossos Due to Main Plux

The main flux (space fundamental) of the air-gap rotates at synchronous speed with respect to the stator and at slip-speed, given by $S M_{s}$, with respect to the rotor. As the slip of the rotor S under normal operating conditions is very small (about 0.07 per unit) losses occur mainly in the stator core, and very little loss occurs in the rotor corc. These stator losses are hysteresis and eddy current losses, the former being an inherent property of the ferro-magnctic core, and the latter duc to omf induced in the core due to the changing magnetic field.

5.1.1 Hysteresis loss

Since the main flux moves with respect to the stator core at synchronous speod the iron is subjected to an alternating magnetization. This leads to hysteresis loss in the iron which depends on the area of the hysteresis loop, the number of flux alternation per sccond and the quality and quantity of iron.

According to Steinmetz the hysteresis loss per unit weight is givon by

$$
\begin{equation*}
W_{h}=W_{r_{v}} \mathrm{~B}_{\mathrm{m}}^{\mathrm{n}} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{B}_{\mathrm{m}}= & \text { the maximum value of flux density } \\
\mathrm{f}= & \text { frequency of flux alternation } \\
\eta_{\mathrm{h}}= & \text { a constant depending on the quality of iron } \\
n= & \text { an exponent which varies from } 1.5 \text { to } 2.0 . \\
& \text { Steinmetz used } 1.6 .
\end{aligned}
$$

Richter ${ }^{10}$ proposed a more accurate equation as follows

$$
\begin{equation*}
W_{h}=a f B_{m}+b f B_{m}^{2} \tag{5.2}
\end{equation*}
$$

where a and b are constants independent of the nature of flux variation as the hysteresis loss depends on the area of the $B-H$ loop, and the area being indopedent of the way in which the flux varies with time. The area depends only on the maximum value of the flux density encountered.

Equation 5.2 as proposed by Richter is essentially a polynomial fit of the hysteresis loss versus flux density curve. For flux density greater than $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$ Iitchwiz ${ }^{9}$ showed that the term $a f B_{m} \ll \operatorname{bfB}_{m}{ }^{2}$ and as such proposed the following equation

$$
\begin{equation*}
W_{h}=b f B_{m}^{2} \tag{5.3}
\end{equation*}
$$

Litohviz's equation 5.3 and Stoinmotz oquation 5.1 aro similar. Litchwiz takes the exponent n of the Stcinmetz oquation as 2. No value vill be assignod to exponent n at this stago.

If the hystoresis loss is represented by the loss occurring in a rosistor shunting the air-gap voltage in the stator, such that the power absorbod by this resistor cquals the hystorosis loss then,

$$
\begin{equation*}
R_{h}=\frac{E_{g f}^{2}}{V_{h}}=\frac{E_{g f}^{2}}{\eta_{i^{f B_{m}}}{ }^{2}} \tag{5.4}
\end{equation*}
$$

whore $E_{g f}$ is the r.m.s. value of the line to neutral voltage induced in the stator winding at frequency f.

And W_{h} is one-third of the total hysteresis loss for a 3-phasc machine.

Now the peak valuc of the main flux \oint_{m} is given by

$$
\begin{equation*}
\phi_{\mathrm{m}}=\frac{\mathrm{E}_{g f}}{4 \mathrm{~K}_{\mathrm{f}} \mathrm{fN}_{I} \mathrm{Kw}_{I}} \tag{5.5}
\end{equation*}
$$

where K_{f} is the form factor of the induced voltage $\mathrm{VI}_{\mathrm{i}} \mathrm{Kw}_{1}$ is the cffoctive number of stator turns por phase.
Kv_{l} is the stator winding factor for space funda-
montal of air-gap mmf.

Thoreforo flux density B_{m} is given by

$$
\begin{equation*}
B_{m}=\frac{夭_{m}}{A}=\frac{E_{g f}}{4 \mathrm{~K}_{f^{ \pm}} I^{K W_{I}} \mathrm{IA}^{A}} \tag{5.6}
\end{equation*}
$$

By substituting equation 5.6 in cquation 5.4 we can obtain the value of tho hysteresis loss simulating resistor as

$$
\begin{align*}
R_{h} & =\frac{\left(4 K_{f} N_{1} K w_{1} A\right)^{n}}{Y_{h}}\left(\frac{E_{g f}}{f}\right)^{(2-n)} f \\
& =\frac{\left(4 K_{1} K w_{1} A\right)^{n}}{N_{h}}\left(K_{f}\right)^{n}\left(\frac{E_{g f}}{f}\right)^{(2-n)_{f}} \tag{5.7}
\end{align*}
$$

In the above equation $5.7, \mathrm{~N}_{1}, \mathrm{KW}_{1}$ and A arc constants for a given motor, T_{h} is almost constant (Equation 5.1), the form factor K_{f} depends on the wave-form of the linc to noutral induced voltage of the stator: Noglecting the leakage impedance drop of the stator, the voltage applied is very nearly equal to the inducod stator voltage. Further, under sinusoidal operation, the wave-form of the induced voltage romains the same and as such K_{f} equals 1.11. Therefore, under the above-montioned constraints the iron loss duc to hysteresis for a given ($\mathbb{E}_{\mathrm{gf}} / \mathrm{f}$) ratio can be roprosented by a variablc resistance R_{h} which is a lincar function of froquency. The validity of cquation 5.7 can be scon from figure 4.6. (Figure 4.6 givos the variation of R_{Mf}, the resistanco simulating both the hystoresis and eddy current losscs. It will be shown in scction 5.1.2 that cddy current losses are nogligible, and $R_{\text {Mf }}$ equals R_{h}).

If the hysteresis loss simulating resistance P_{h} under sinusoidal 50 Hz porating condition R_{350} is known for a given $E_{g f} / f$ ratio, thon the value of R_{h} for a different value of froquency but the same ($\mathrm{E}_{\mathrm{gf}} / \mathrm{f}$) (undor sinusoidal supply) can be determincd from

$$
\begin{equation*}
R_{h}=R_{h 50} \frac{f}{50} \tag{5.8}
\end{equation*}
$$

The effcet of froquency f and ($E_{g f} / f$) ratio on hysteresis loss can be found by substituting oquation 5.6 into cquation 5.1 yielding

$$
\begin{equation*}
W_{h}=\frac{M_{h}}{\left(4 N_{I} K w_{I} A\right)^{n}} K_{f}^{-n}\left(\frac{E_{g f}}{f}\right)^{n_{f}} \tag{5.9}
\end{equation*}
$$

The hysteresis loss at 50 Hz sinusoidal operation is givon by

$$
\begin{equation*}
W_{h 50}=\frac{M_{h}}{\left(4 W_{1} \mathrm{Kw}_{1} A\right)^{n}} K_{f}^{-n}\left(\frac{E_{\mathrm{g} 50}}{50}\right)^{n} 50 \tag{5.10}
\end{equation*}
$$

Tho ratio of hystorosis loss at any frequency to that at 50 Hz sinusoidal operating condition is given by

$$
\begin{equation*}
\frac{W_{h}}{T_{h 50}}=\left(\frac{E_{g f} / f}{E_{g 50 / 50}^{50}}\right)^{n} \frac{f}{50} \tag{5.11}
\end{equation*}
$$

Induction motor ruming under "fixed maximum torque" oporating condition requiros that $E_{g f} / f=E_{g 50} / 50=a$ constant. Hence, under such a condition

$$
\begin{equation*}
\frac{W_{h}}{W_{h 50}}=\frac{f}{50} \tag{5.12}
\end{equation*}
$$

Haring described the nature of hysteresis loss the value of the exponent n will be determined. Throughout the investigation the $\mathbb{E}_{g f} / f$ ratio was maintained at 2 Volt/Hertz. Referring to figure $4.6, \mathrm{R}_{\mathrm{h} 50}$ has two values at 50 Hertz depending on E_{g} / \pm ratio.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{h} 50}(\text { at } 1.8 \text { Volt } / \mathrm{Hortz})=48 \Omega \\
& \mathrm{R}_{\mathrm{h} 50}(\text { at } 2.2 \text { Volt } / \mathrm{Hortz})=45 \Omega
\end{aligned}
$$

Therefore from equation 5.7
$48 \propto(1.8)^{(2-n)}$
$45 \propto(2.2)^{(2-n)}$

Solving the above two proportionalities wo obtain $n=1.674$, so that R_{h} for this particular motor is given by

$$
\begin{equation*}
R_{h}=\frac{\left(4 \mathbb{N}_{1} K_{w_{1}} A\right)^{1.674}}{N_{h}}\left(K_{I}\right)^{1.674}\left(\frac{E_{g f}}{I}\right)^{0.326} \mathrm{I} \tag{5.13}
\end{equation*}
$$

5.1.2 Eddy current loss

The eddy current loss W_{c} in a given plato of thickness δ and resistivity ρ_{0} is given by

$$
\begin{equation*}
W_{c}=f_{c} c^{2}\left(\mathrm{~K}_{\mathrm{f}} \mathrm{fB}\right)^{2} \tag{5.14}
\end{equation*}
$$

If the eddy current loss is represented by a resistor shunting the stator induced voltage E_{gf} such that the power absorbed by this resistance equals the eddy current loss, then

$$
\begin{equation*}
R_{c}=\frac{E_{g f}^{2}}{W_{c}}=\frac{E_{g f}^{2}}{P_{\mathrm{C}} \delta^{2} K_{f}^{2} f^{2} B_{m}^{2}} \tag{5.15}
\end{equation*}
$$

Substituting the value of B_{m} from equation 5.6 in equation 5.15 gives the eddy current loss as

$$
\begin{equation*}
R_{c}=\frac{16\left(\mathrm{~N}_{1} K w_{1} A\right)^{2}}{P_{e} \delta^{2}} \tag{5.16}
\end{equation*}
$$

For a given machine the value of the resistor simulating the eddy current loss is independent of the frequency and the waveform of the line to neutral voltage induced in the stator winding.

Substituting equation 5.6 in equation 5.14 gives the cody current loss as

$$
\begin{align*}
W_{e} & =P_{c} \delta^{2}\left(K_{f} f\right)^{2} \frac{E_{g f}^{2}}{4^{2} K_{f}^{2} f^{2}\left(N_{1} K w_{1} A\right)^{2}} \\
& =\frac{P_{e} \delta^{2}}{1 \sigma\left(N_{1} K w_{1} A\right)^{2}} E_{g f}^{2} \tag{5.17}
\end{align*}
$$

The eddy current loss at 50 Hortz and under normal sinusoidal operating condition is given by

$$
\begin{equation*}
W_{050}=\frac{P_{e} \delta^{2}}{16\left(N_{1} K w_{1} A\right)^{2}} E_{g 50}^{2} \tag{5.18}
\end{equation*}
$$

Thon the ratio of eddy current loss at any
frequency to that at 50 Hertz is given by

$$
\frac{W_{e}}{W_{e 50}}=\frac{E_{g f}^{2}}{\left(E_{g 50}\right)^{2}}
$$

and since for fixed maximum torque operation $E_{g} / \hat{I}=E_{g 50} / 50=$ constant

$$
\begin{align*}
\frac{W_{e}}{W_{c 50}} & =\left\{\frac{\mathbb{E}_{g f} / f}{\mathbb{E}_{g 50} / 50}\right\}^{2} \frac{f^{2}}{50^{2}} \\
& =\frac{f^{2}}{50^{2}} \tag{5.19}
\end{align*}
$$

The oddy current loss is proportional to the square of frequency.

From the no-load and locked rotor tests described in chapter 4 and figure 4.6 it can be seen that the resistance simulating the combined iron loss for a constant air-gap flux density is a linear function of froquency. The iron loss caused by the variation of main flux in the stator consists mainly hystoresis loss.

5.2 Stator Copper Loss

The stator phase curront flowing through the stator winding produces an I^{2} R loss in each phase. These losses are the simplest to evaluate and are given by the product of the square of the r.m.s. stator current and the stator phase resistance. Cross-fluxes in the slot may produce additional copper loss due to skin effect. Skin effect is proportional to the square root of frequency and has little effect ($5 \%-15 \%$) on copper loss.

5.3 Rotor Copper Loss

It is well known that due to the concentration of stator windings in slots the mmf distribution of air-gap in space produced by the flow of current in a balanced threephase winding is stepped. Such stepped space distribution of mond can be resolved into a Fourier series giving a space fundamental and an infinite series of space harmonics. With the assumption of linearity of the magnetic circuit, the space fundamental $m m f$ is considered to produce the main space fundamental flux, the space harmonic mmfs producing parasitic fluxes which travel with different speeds (some in the opposite direction) to the main flux. The strengths of these fluxes are proportional to the current in the winding and inversely proportional to the air-gap length.

For a given rotor speed the space fundamental and space harmonic fluxes pass the rotor at definite speds and currents of various frequencics flow in the rotor winding. The space fundamental component of flux produces a rotor current of frequency $S f$, the slip frequency, which comprises the major part of the total rotor current and develops the useful torque, but produces rotor winding copper loss. Since the space harmonic fluxes rotate at lower speeds, they give rise to extra copper loss. At noload the stator current is small (and hence the strength of the harmonic components of mmf) and so the harmonic fluxes are small. As the motor is loaded the strength of these harmonic fluxes increase and so does the extra rotor copper loss. These extra losses in a weil designed motor are about 0.03% to 0.05% of the output and more pronounced in a cage motor than in a wound rotor machine becauso all the space harmonics are slot harmonics which have the same winding factor as the fundamental.

Tinc conventional text-book equivalent circuit (Figure 4.l) takes into account only the space fundamental of air-gap flux and as such the equivalent circuit fails to account for the extra copper loss in the rotor winding, as well as to predict the parasitic torques arising due to the space harmonic fluxes.

The same systom used for the realization of the simple equivelent circuit on be extended to derive a more complete equivalent circuit taking into account the space harmonies and is shown in figure 5.I. The quentitative analysis of ficld harmonics and harmonic cquivalent circuit parameters are given in the next section.

5.3.1 $\frac{\text { Picld harmonics in the }}{\text { air-gap of induction motors } 5,6}$

The space fundamontal min rotates at a speed depending on the Irequency of supply f and the number of poles of the machine P and is given by $\mathbb{N}_{S}=\frac{2 f}{P}$ r.p.s.

The amplitude of this space fundamental mmf is given by, for three-phase stator,

$$
\begin{equation*}
\mathrm{F}_{I}=\frac{3(2)^{\frac{1}{2}}}{\pi \mathrm{P}} \mathbb{N}_{1} K w_{I} I_{I} \tag{5.20}
\end{equation*}
$$

Where \mathbb{N}_{1} is the number of stator turns per phase, ${ }^{T v v} I_{1}=$ $K_{d I} K_{y l}$ is the winding cocfficiont for the space fundamental and is equal to the product of coefficients for the distribution and the shortening of winding pitch.

The winding distribution coefficiont for space fundamental is given by

$$
\begin{equation*}
K_{\alpha I}=\frac{\sin \pi / \sigma}{q_{1} \sin \frac{\kappa}{6 q_{I}}} \tag{5.21}
\end{equation*}
$$

where $q_{1}=$ number of slots per pole per phasc of the stator.
The pitch factor for space. fundamental is given by

$$
\begin{equation*}
\mathrm{K}_{\mathrm{yI}}=\sin \frac{\pi}{2} \mathrm{y} \tag{5.22}
\end{equation*}
$$

whore y is the winding pitch expressed as a fraction of the full pitch.

The general expression for harmonics of the m.mf for intogral number of slots per pole per phaso due to sinusoidal excitation is given by

$$
\begin{align*}
F(x, t)= & F \sin \left(2 \pi f t-\frac{\pi}{T}-x\right) \\
& +F_{5} \sin \left(2 \pi f t-\frac{5 \pi}{T}-x\right) \\
& +\ldots \\
= & \sum_{\nu=1}^{\nu} F{ }_{2} \sin \left(2 \pi f t-\frac{\nu \pi}{T}-x\right) \tag{5.23}
\end{align*}
$$

Where 2 is the order of space harmonic
Tspace fundamental pole pitch
x distance along the contre line of the air-gap
The number of poles of the $\nu^{\text {th }}$ space harmonic is a $\nu^{\text {th }}$ multiple of the space fundamental, but its speed of rotation is less by the same proportion. Therefore the em. induced by the $\nu^{\text {th }}$ space harmonic of mot.is equal to
the frequency of supply.
For balanced windings with q_{1} as an integer, the orders of harmonics present are given by, for three-phase stator,

$$
\begin{equation*}
\nu=1 \pm 6 K_{1} \tag{5.24}
\end{equation*}
$$

where $K_{1}=0,1,2,3, \ldots$ etc.

For $K_{1}=0$, we obtain the space fundamental $\boldsymbol{V}=1$.
Positive values of ν indicate forward rotation whereas negative values of $\mathcal{\nu}$ indicate backward rotation of the $\nu^{\text {th }}$ harmonic.

For $K_{1}=K_{1 z} q_{1}$
where $K_{1 z}=1,2,3,4$ etc. slot harmonic orders arc obtained.

$$
\begin{align*}
\nu_{z} & =1 \pm 6 \mathrm{~K}_{1 \mathrm{z}} \mathrm{q}_{1} \\
& =1 \pm 2 \mathrm{~K}_{1 \mathrm{z}} \frac{\mathrm{~S}_{1}}{\mathrm{P}} \tag{5.25}
\end{align*}
$$

where S_{1} is the total number of stator slots

All other harmonics are called belt harmonics, \mathcal{V}_{b}, because they are due to definite phase spreads.

$$
\begin{equation*}
\nu_{b}=1 \pm 6 K_{1} \tag{5.26}
\end{equation*}
$$

where $\mathrm{K}_{1}=0,1,2,3$ etc.

$$
\neq \mathrm{K}_{I z} q_{I}
$$

The distinction is drawn between slot and belt harmonics for the following reasons :
i) The secondary voltages induced by the slot harmonics are effectively open-circuited by the rotor, whereas that due to the belt harmonics are substantially shortcircuited.
ii) The slot harmonic magnetizing reactances are independent of winding pitch, but vary with the number of slots, whereas those due to the belt harmonics are nearly independent of the number of slots, but vary with the pitch and distribution of the windings.

The magnitude of the $\boldsymbol{\nu}_{b}^{\text {th }}$ space harmonic mon can be found from the relation

$$
\begin{align*}
F_{y_{b}} & =\frac{3}{x} \frac{2(2)^{\frac{1}{2}}}{P} N_{I} \frac{K_{W \nu_{b}}}{\nu_{b}} I_{I} \\
& =\frac{1}{\boldsymbol{\gamma}_{b}} \frac{K_{W w_{b}}}{K w_{I}} F_{I} \tag{5.27}
\end{align*}
$$

where $\mathrm{K}_{\mathrm{w} \nu_{\mathrm{b}}}$ is the winding factor for $\nu_{\mathrm{b}}^{\text {th }}$ belt harmonic and is given by

$$
\begin{equation*}
\mathrm{K}_{\mathrm{W} \nu_{\mathrm{b}}}=\mathrm{K}_{\mathrm{d} \nu_{\mathrm{b}}} \mathrm{~K}_{\mathrm{y} \nu_{\mathrm{b}}} \tag{5.28}
\end{equation*}
$$

where the $\nu_{b}^{\text {th }}$ harmonic distribution factor

$$
\begin{align*}
\bar{K}_{d \%} & =\frac{\sin \left(p_{b} \pi / 6\right)}{q_{1} \sin \left(\eta_{b} \pi / 6 q_{1}\right)} \\
& =\frac{\sin \pi / 6}{q_{1} \sin \frac{\pi \nu_{b}}{6 q_{I}}} \tag{5.29}
\end{align*}
$$

and the $\nu_{b}^{\text {th }}$ harmonic pitch factor

$$
\begin{equation*}
\mathrm{K}_{\mathrm{y} \psi_{\mathrm{b}}}=\sin \nu_{\mathrm{b}} \frac{\bar{\pi}}{2} \mathrm{y} \tag{5.30}
\end{equation*}
$$

For slot harmonics

$$
\begin{equation*}
\mathrm{K}_{\mathrm{d} \boldsymbol{\nu}_{z}}=\mathrm{K}_{\mathrm{d} I} \tag{5.31}
\end{equation*}
$$

and $\quad K_{y \nu_{z}}=K_{y I}$
The rotor currents create their own harmonics.
The orders of the rotor space harmonics can be determined as follows. The space-fundamental stator field harmonic induces a slip frequency current in the rotor which produces a series of harmonics given by, for three-phase rotor

$$
\mu=I \pm 6 K_{2}
$$

where $K_{2}=0, I, 2,3$ etc.
which may again be split up into belt and slot harmonics

$$
\mu_{b}=1 \pm 6 K_{2}
$$

where $\mathbb{K}_{2}=0,1,2,3$ etc.

$$
\begin{equation*}
\neq \quad K_{2 z} q_{2} \tag{5.33}
\end{equation*}
$$

where $K_{2 z}=1,2,3$ etc.

$$
\begin{equation*}
\mu_{z}=I \pm 2 K_{2 z} \frac{S_{2}}{P} \tag{5.34}
\end{equation*}
$$

where S_{2} is the total number of rotor slots.
For a cage motor μ_{b} is absent. Substituting $K_{2}=0$ in equation 5.33 we obtain $\mu=1$, the first m.m.f. harmonic in the rotor.

The equations 5.33 and 5.34 give the order of rotor harmonics produced by the stator fundamental m.m.f. only. Also, every other stator harmonic induces its own harmonics in the rotor. Hence, in general, for three-phase machine

$$
\begin{equation*}
\mu=\nu \pm 6 \mathrm{~K}_{2} \tag{5.35}
\end{equation*}
$$

The pole number of $\mu^{\text {th }}$ harmonic of the rotor is a μ multiple of the poles of the stator space fundamental. Now the speed of the $\mathcal{\nu}^{\text {th }}$ stator field harmonic with respect to the stator is $\mathbb{N}_{S} / \mathcal{V}$. The speed of the $\mu^{\text {th }}$ rotor harmonic, produced by the $\nu^{\text {th }}$ stator harmonic with respect to the rotor, is $\frac{\mathrm{S}^{\mathrm{N}} \mathrm{S}}{\mathrm{A}}$. Since the rotor speed is (I-S) \mathbb{N}_{S}, the speed of the $\mu^{\text {th }}$ rotor harmonic with respect to the stator is given by

$$
\begin{align*}
& \frac{1}{\mu}\left\{S_{2} N_{S}+(1-S) N_{S} \mu\right\} \\
= & \frac{N_{S}}{\mu}\left\{S_{2}-(1-S) \mu\right\} \tag{5.36}
\end{align*}
$$

Since the slip of the rotor with respect to $\nu^{n / 5}$ stator ficld harmonic

$$
s_{\nu}=1+\nu(s-1)
$$

cquation 5.36 can be writton as

$$
\begin{align*}
& \frac{\mathbb{N}_{s}}{\mu}\{1-\nu(1-S)+\mu(1-S)\} \\
= & \frac{\mathbb{N}_{s}}{\mu}\{1+(1-S)(\mu-\nu)\} \tag{5.37}
\end{align*}
$$

From the above equation 5.37 it can be scen that when $\mu=\mathcal{\nu}$, the specd of the $\mu_{N_{s}}^{\text {th }}$ rotor harmonic with respect to the stator is $\frac{\mathbb{N}_{S}}{\mu}=\frac{\mathbb{N}_{S}}{\nu}$ for all rotor spocds. The stator harmonic is rotating with rospect to the stator at a speed of $\frac{\mathbb{N}_{s}}{V}$, honce the relative specd between $\mu^{\text {th }}$ and $\nu^{\text {th }}$ harmonic is zero when $\nu=\mu$.

Under this condition an asynchronous torque is produced in the machine. When $\mathcal{V}=\mu=1$, the asynchronous torque produced is a useful one and for all other highor harmonies $\nu=\mu>1$, the torques, are of no use as their spoeds are very different from that of the space fundamental. Those torques are therefore callod tho
asynchronous parasitic torques.
Quite apart from the asynchronous torques which are produced in an induction motor, synchronous torques can cxist as a result of rotor sub-harmonics. A synchronous torque is produced when a stator harmonic ν_{a} produces a rotor harmonic μ_{a} which has the same ordor as another stator harmonic $\nu_{b}\left(i . c . \mu_{a}= \pm \nu_{b}\right.$) which at a single rotor speed is at standstill with respect to this socond harmonic $\mathcal{\nu}_{b}$. In such a casc ν_{a} is the source of excitation for the rotor and ν_{b} is the source of power of the stator.

5.3.2 Extension of conventional
 fixod frequency cquivalont
 circuit to include the
 offects of space harmonics

Currents induced in the rotor by the space harmonic ficlds produce parasitic torques which modify the ideal machine (a machine whose air-gap flux contains the space fundamental component only) output torque. The effect may be considered to equal that produced by an ideal machine and a set of small machines with a common shaft and with series-connected stators. Each small machine produces the effect of one space harmonic and has \mathcal{V} times the number of poles of the ideal space fundamental machine.

At specds above their respective synchronous values the forward harmonics produce braking torque, as do the
backward rotating harmonics at all forward speeds. These space harmonic fields give rise to stray load losses and parasitic torques.

In order to depict the behaviour of these fiona harmonics on the performance of the induction motor, the simple equivalent circuit of figure 4.1 has to be expanded to a chain network as shown in figure 5.1, where each section depicts the contribution of a particular space harmonic. The equivalent circuit now consists of
$R_{1}=$ pure resistance of stator
$\mathrm{X}_{1}=$ pure reactance equal to the leakage reactance of the stator due to all the fluxes that do not link the rotor winding
$X_{2.1}=$ pure reactance equal to the leakage reactance of the rotor due to all the fluxes that do not link the stator winding
$R_{\text {M }}=$ pure resistance analogue of main flux path iron loss at normal frequency and normal flux conditions
$\mathrm{X}_{\mathrm{M} .1}=$ a transformer whose magnetizing reactance \& $\& \quad$ the fundamental air-gap flux density wave
$\mathrm{R}_{2.1}$ and whose secondary impedance is the

Figure 5.1 Normal Frequency Sinusoidally Excited Induction Motor Equivalent Circuit Taking Space Fundamental And Space Harmonics In Account.
impedance of the rotor winding for currents of slip-frequency Sf .
 having a magnetizing reactance corresponding to the air-gap flux density wave of a particular space harmonic with a stator-referred secondary impedance of the rotor winding of the same number of harmonic poles.

The space harmonic equivalent circuit parameters are calculated according to the methods given by various authors ${ }^{8,} 9,10,11$.

The values of $\mathrm{X}_{\mathrm{in} \text { : }}$ for bolt and slot harmonics arc given by Liwschitz ${ }^{10}$ as
For belt harmonics $X_{\mathrm{M} \cdot \boldsymbol{\nu}_{\mathrm{b}}}=\left(\frac{\mathrm{S}_{\mathrm{W} \nu_{b}}}{\mathrm{~S}_{\mathrm{Kv}_{l}}}\right)^{2} \frac{\mathrm{X}_{\mathrm{M} \cdot 1}}{\boldsymbol{\nu}_{\mathrm{b}}{ }^{2}}$
For slot harmonics $X_{\text {Mi. }} \nu_{z}=\frac{X_{M .1}}{\nu_{z}^{2}}$
(As mentioned earlier for $\nu_{Z}, K_{W} \nu_{z}=K v_{1}$)
Since the order of slot harmonics are such that their magnitudes are increased by the stator slot permeance variations the value of $\mathrm{X}_{\mathrm{M} \cdot \nu_{\mathrm{z}}}$ (Equation 5.38) would bc low. Alger ${ }^{7}$ showed that the effect of the air-gap
permeance variations can be taken into account by multiplying cquation 5.38 by a factor $\left(1+\frac{p_{S}}{2 p_{0}}\right)$ where p_{0} is the average value of the air-gap permeance and p_{s} half tho amplitude of pulsation. The magnetizing roectance for the slot harmonic is therefore

$$
\begin{equation*}
X_{M, \nu_{z}}=\frac{X_{M . I}}{\nu_{z}^{2}}\left(1+\frac{p_{s}}{2 p_{0}}\right) \tag{5.40}
\end{equation*}
$$

Since the tecth are usually saturated under normal oporating conditions it was considered that in the above cquation 5.40 the terms $\left(1+\frac{p_{S}}{2 p_{0}}\right)$ can be eliminated and the unsaturated value of $X_{\text {M. }}$ be used (Figure 4.8) to vompure $\mathrm{X}_{\mathrm{M} \cdot \nu_{\mathrm{Z}}^{2}}{ }^{\circ}$

The rotor leakage reactance for the $\boldsymbol{\nu}^{\text {th }}$ harmonic $X_{2 \nu}$ comprises differential harmonic leakage, skew lcakage and the rotor slot leakage.

The differential harmonic leakage as given by Richter ${ }^{11}$ is

$$
\begin{equation*}
X_{2 d \nu}=K_{M \nu} X_{M \nu} \tag{5.41}
\end{equation*}
$$

where $K_{\mathbb{Z} \boldsymbol{\nu}}=\left\{\frac{\nu \pi P}{2 S_{2}} / \sin \frac{\nu \pi P}{2 S_{2}}\right\}^{2}-1$
The valuc of difforcntial leakage calculatod Irom cquation 5.41 yiclds too high a value and hence parasitic torques and lossescomputed are correspondingly low.

Agarmal ${ }^{12}$ suggested that a value of $2 / 3$ of that givon by equation 5.41 should bo used on the ground that oddy currents induced in the rotor iron help to damp the differontial harmonic fiux, and honce reduce the loakage reactanco. Therefore, with Agerwal's empirical correction the differential harmonic leakage becomes

$$
\begin{equation*}
X_{2 d \nu}=\frac{2}{3} x_{M \nu} \tag{5.43}
\end{equation*}
$$

The damping action of the eddy currents induced in the rotor iron would depend on the frequency of the eddy currents induced in the rotor laminations and hence on the rotor speed. Since the stator and rotor tooth tips are heavily saturated due to the combincd effects of the differential and slot Icakage fluxes, this reduces the value of $X_{2 d y}$ below that calculated from equation 5.43. Alger and Agarwal ${ }^{8}$ takes into account the effect of saturation by introducing a correction factor $K_{S d I}$ and the expression for $X_{2 \alpha 2}$, now becomos

$$
\begin{equation*}
X_{2 d \nu}=\frac{2}{3} K_{\operatorname{sdI}}{ }^{K_{N d \nu}} X_{M \nu} \tag{5.44}
\end{equation*}
$$

$K_{\text {sdI }}$ was not calculated because of the complexity involved with doubtful accuracy of $\mathrm{X}_{2 d \boldsymbol{\nu}}$, but an attompt was made in a rather crude way to take into account saturation by computing $X_{M y}$ from the saturated value of
$X_{\text {MI }}$ (Figure 4.8).
The skew leakage reactance for the $\boldsymbol{\gamma}^{\text {th }}$ harmonic is given by Alger ${ }^{7}$ as

$$
\begin{equation*}
X_{s k \nu}=\left(\frac{1}{K_{s k y}^{2}}-1\right) X_{\mathrm{M} \nu} \tag{5.45}
\end{equation*}
$$

where $K_{s k \nu}$ is the skew factor calculated from the geometrical skew of the rotor slots. This is given by

$$
\begin{equation*}
\mathrm{K}_{\operatorname{skv}}=\sin \left(\frac{\nu c^{\prime}}{T^{\prime}} \pi / 2\right) /\left(\frac{\nu_{c^{\prime}}^{\prime}}{r^{\prime}} \frac{\pi}{2}\right) \tag{5.46}
\end{equation*}
$$

where $\boldsymbol{T}^{\prime}=$ pitch of the fundamental poles in terms of rotor slots
$c^{\prime}=$ pitch of the rotor slot skew with respect to stator slots.

Lumping the differential and skew leakage reactance together, we get

$$
\begin{align*}
X_{2 d \nu}+X_{\operatorname{sk\nu }} & =\frac{2}{3} \mathrm{~K}_{\mathbb{M} \nu} X_{M \nu}+\left(\frac{1}{K_{\operatorname{sk\nu }}{ }^{2}}-1\right) X_{M \nu} \\
& =X_{M \nu}\left\{\frac{2}{3} \mathbb{K}_{\mathbb{M} \nu}+\frac{1}{K_{\operatorname{sk\nu }}{ }^{2}}-1\right\} \tag{5.47}
\end{align*}
$$

For space harmonics, rotor slot leakages are usually smaller than $\left(X_{2 d \nu}+X_{\operatorname{sky}}\right)$ by a factor of 10 and the calculation of $\left(X_{2 d \nu}+X_{s k \nu}\right)$ using the equation 5.47 yields a high value since saturation is not taken completely into
account. Neglecting rotor slot leakage reactance, $\mathrm{X}_{2} \boldsymbol{\nu}$ is given by

$$
\begin{align*}
x_{2 \nu} & =x_{2 d}+x_{s k} \\
& =X_{M \nu}\left\{\frac{2}{3} K_{M \nu}+\frac{1}{K_{s k \nu}}-1\right\} \tag{5.48}
\end{align*}
$$

The stator referred rotor resistance for space harmonics can be calculatcd as follows. The rotor resistance for belt harmonics is given by ${ }^{9}$

$$
\begin{equation*}
R_{2 \nu_{b}}=\left\{\frac{S_{K w \nu_{b}}}{R_{K w \nu_{b}}} \frac{R_{K w_{l}}}{S_{K w_{1}}} \frac{\mathrm{~K}_{\mathrm{skl}}}{\mathrm{~K}_{\mathrm{sk}} \boldsymbol{\nu}_{\mathrm{b}}}\right\}^{2} \mathrm{R}_{2.1} \tag{5.49}
\end{equation*}
$$

as the wound rotor resistance referred to stator depends on the effective turns-ratio of stator and rotor windings.

Since for slot harmonics $\mathrm{Kw}_{1}=\mathrm{Kw}_{\mathrm{z}}$

$$
\begin{equation*}
R_{2 \nu_{z}}=\left\{\frac{K_{s k l}}{K_{s k \nu}}\right\}^{2} R_{2.1} \tag{5.50}
\end{equation*}
$$

The final torm required for evaluation is S_{ν}, which is the slip of tho rotor for $\nu^{\text {th }}$ harmonic of ficld m.m.f. For the $\boldsymbol{V}^{\text {th }}$ forward rotating space harmonic, the per unit synchronous speed is $I / \boldsymbol{\nu}$. If the slip of the rotor with respect to the fundamental polos is S, then per unit rotor speod is (1-S).

$$
\begin{align*}
\therefore \quad S_{\boldsymbol{y}} & =\frac{1 / \nu-(1-S)}{1 / 2} \\
& =1-y(1-S) \tag{5.51}
\end{align*}
$$

From the above equation 5.51 it can be seen that $S_{\boldsymbol{\nu}}=0$ when $S=\frac{\boldsymbol{\nu}-1}{\boldsymbol{\nu}}$ and $S_{\boldsymbol{\nu}}$ is a negative quantity for $S<\frac{\nu-1}{\nu}$. Therefore the torque produced by the forward rotating space harmonic adds to the fundamental torque for slip S between the values 1 and $\frac{\nu-1}{\boldsymbol{\nu}}$ and subtracts from it for all smaller values of slip. The backward rotating harmonics do so at all forward speeds.

For backward rotating space harmonics \mathcal{V} has a negative valuc, and hence

$$
\begin{equation*}
S_{\nu}=1+\boldsymbol{v}(1-S) \tag{5.52}
\end{equation*}
$$

5.4 Losses Due to Slot Oponings $7,12,13,14$

Considexing the iron to bo unsaturated and the airgap m.m.f. to have a sinusoidal space distribution, the slotting of the stator and the rotor makes the spacc distribution of the resultant flux density wave depart from the sinusoidal. The distribution of flux donsity under such conditions can be considered to consist of three components :-
i) fundamontal sinusoidal flux distribution having an amplitude determined by the effective air-gap longth
(Cartcr's Cocfficiont);
ii) flux density ripplc having a wave-length cqual to that of a stator slot pitch caused by a stator slot, the rotor being considered smooth;
iii) flux density ripple having a wave-length equal to that of a rotor slot pitch, the stator bcing considered smooth.

These harmonics of air-gap flux density distribution are due to tho variation of air-gap permeance and are not slot harmonics.

If the stator and the rotor surfaces were smooth, and the air-gap m.m.f. was sinusoidally distributed, saturation would cause the flux density distribution around the machine air-gap to be non-sinusoidal (flattencd top) so that a fourth source of flux density space harmonics is present.

Thesc space harmonic components give rise to two different kinds of loss :-
i) stator and rotor surface loss;
ii) stator and rotor tooth pulsation loss.

Rotor surface losses arise from the movenent of stator slot ripple with respect to the rotor. The rotor slot ripple moves with respect to the stator and causos stator surface loss. Surface losses arc lerger in
machines with open slots.
The stator and the rotor tooth pulsation losses arise due to the flux penctration of the teeth themselves, and pulsation due to the relative motion between the stator and the rotor which results in eddy currents and hysteresis losses in the tecth. The frequency of these pulsations is the same as that for the tooth surface losses, i.c. for stator $\mathrm{S}_{2} \mathbb{N}_{\mathrm{s}} / 50$ (for this motor 720 Hertz) and for the rotor $S_{1} N_{S} / 50$ (for this motor $1,080 \mathrm{Hertz}$). The magnitude of the variation of the flux density in the teeth depends upon the saturation of the teeth, the greater the saturation the greater is the hysteresis and eddy current losses in the teeth. Hence it can be scen that the teeth losses are related in a rather complex way to the speed of the rotor, and to the load curront.

The permeance variation gave rise to these ripples of flux density distribution due to the sinusoidal space distribution of m.m.f. The situation becomes furthor complicated when there are higher order m.m.f. space harmonics present. The flux density distribution produced by these higher mom.f. space harmonics are also effected by the non-uniformity of the air-gap and by saturation. Dach space harmonic m.m.f. component (neglecting saturation) gives rise to two more ripples of flux density apart from
that which would be produced by the harmonic m.m.f. itself if the air-gap surfaces were smooth. The total losses due to slot openings are larger in induction machincs than in D.C. machincs and synchronous machines because of the relatively smaller air-gap. Those losses, as a percontage of iron losses due to main flux, are approximately 80% to 120% in squirrel cage motors with scmi-open slots in stator and rotor, 150% to 200% in squirrcl cage motor with open slots in stator and semi-open slots in rotor, and 180% to 220% in wound rotor machines.

The flux density ripples produced by slot oponings induce parasitic currents not only in the iron but also in the bers of a squirrel cage rotor. The currents induced in these bars may become considerable and give risc to extra copper losses, which may be high, if the slot pitch of the cage is very different from the stator slot pitch. A difference of up to 30% between the slot pitches kecps the losses at a low lovel. Equal stator and rotor slot pitches cannot be uscd becausc this would produce locking torques which may prevent starting of the motor.

5.5 Variable Frequency Equivalent
 Circuit. Oporation Accounting For
 Space Fundamental M.M.F. Only ${ }^{15}$

The performance of an induction motor when supplicd from a variable frequency source of frequency I can be
predicted from the simple equivalent circuit shown in figure 4.I, if the equivalent circuit reactances applicable to that frequency are used. This meant in this experiment that for cach different supply frequency the equivalent circuit parameters had to be recalculated and the performance predicted. Unfortunately, the salient effects of the variable frequency on the motor performance cannot be visualized from such a mothod. Therefore it was desired to find an equivalent circuit with constant parameters which would be applicable to any frequency.

The sequence of development of the variable frequency equivalont circuit is as follows. Reforring to figure 5.2 a supply of normal frequency f_{n}, for which the motor has been designed to operate, is frequency translated to a frequency f. A voltage V_{f} of this froquency is applicd to the stator of the induction motor, the stator circuit of which is represented by the stator leakage impodance $\left(R_{I}+j X_{I f}\right)$ in serics with the magnctizing impedance $I /\left(I / R_{\text {Mf }}-j I / X_{M f}\right)$. Tho rotor translates this frequency f to Sf, the slip frequency, and a rotor voltoge $\mathrm{E}_{2 \mathrm{~S}_{\mathrm{f}}}$ of this frequency is applied across the rotor leakage impedance $\left(R_{2}+j X_{2 \mathbf{S f}}\right)$.

For the maximum torque to remain fixed, V_{f} should be so adjusted that the air-gap mutual flux \emptyset_{m} (space

Figure 5.2 Stages of frequency translation in the development of variable frequency simple equivalent circuit of an induction motor under sinusoidal excitation.
fundamental) remains constant for any particular value of the stator current, i.e.

$$
\begin{equation*}
\phi_{\mathrm{m}}=\mathrm{K} \frac{\mathrm{E}_{g f}}{\mathrm{f}}=\mathrm{K}-\frac{\mathrm{E}_{\mathrm{gn}}}{I_{n}}=\text { constant } \tag{5.53}
\end{equation*}
$$

where $E_{g f}$ is the air-gap voltage at any frequency f and $E_{g f_{n}}$ is the air-gap voltage at normal frequency f_{n} 。

The rotor current as viewed from the output terminals of the "black box $2^{2 "}$, termed the "frequency translation device 2 ", is

$$
\begin{equation*}
I_{2}=\frac{E_{2 s f}}{R_{2}+j X_{2 s f}} \tag{5.54}
\end{equation*}
$$

It has been shown in chapter 4 and figure 4.11 that the leakage reactances, for a given stator current, are directly proportional to the frequency. Therefore the slipfrequency stator roflected rotor leakage reactance $X_{2 S f}$ con be writton as

$$
\begin{equation*}
\bar{X}_{2 S f}=S_{2 f} \tag{5.55}
\end{equation*}
$$

where $X_{2 f}$ is the stator reflected rotor loakage reactence at supply frequency f.

The torm $E_{2 S f}$ is the stator reflocted rotor induced voltage (wiun a rotor slip of S) and is of
frequency $S f$. If $E_{2 f}$ is the value of $E_{2 S f}$ when the rotor is at standstill then

$$
\begin{align*}
\mathrm{E}_{2 S f} & =\mathrm{SE}_{2 f} \tag{5.56}\\
& =S E_{g f} \quad\left(\text { since } E_{2 f}=E_{g f}\right)
\end{align*}
$$

Substituting equations 5.55 and 5.56 in equation 5.54 , the stator-reflected rotor current becomes

$$
\begin{equation*}
I_{2}=\frac{S E_{g f}}{R_{2}+j S X_{2 f}} \tag{5.57}
\end{equation*}
$$

The rotor current I_{2} given by equation 5.57 is of the slip-frequency Sf.

Dividing the numerator and denominator of cquation 5.57 by the slip S, the rotor current as viewed from the input end of the frequency translation device 2 (figure 5.2) which is at the variable frequency f, is obtained.

$$
\begin{equation*}
I_{2}=\frac{E_{g f}}{\frac{R_{2}}{S}+j X_{2 f}} \tag{5.58}
\end{equation*}
$$

Therefore the rotor circuit as viewed by the air-gap voltage $\mathrm{E}_{\mathrm{g} f}$ looks as if its resistance has increascd from R_{2} to $\frac{\mathrm{R}_{2}}{\mathrm{~S}}$ and the reactance has also increased from the slipfrequency value $X_{2 S f}$ to the value $X_{2 f}$ at the variable frequency f.

The no-load current of frequency f is given by

$$
\begin{equation*}
I_{\mathrm{nl}}=\mathrm{E}_{\mathrm{gf}}\left(I / \mathrm{R}_{\mathbb{M f}}-j 1 / \mathrm{X}_{\mathrm{Mf}}\right)=I_{\mathrm{M}} \tag{5.59}
\end{equation*}
$$

where $\mathrm{R}_{\text {Mf }}$ is the core loss simulating resistor and $X_{M f}$ is the magnetizing reactance at frequency f both for the magnetizing air-gap flux which is proportional to $E_{g f} / \pm$.

The stator current of variable frequency f as view od from the output terminals of the "frequency translation device $\mathrm{l}^{\prime \prime}$ is given by

$$
\begin{equation*}
I_{I}=\left(V_{f}-E_{g f}\right) /\left(R_{I}+j X_{l f}\right) \tag{5.60}
\end{equation*}
$$

In order to transfer the three currents I_{2}, I_{1} and I_{1} as given by equations $5.58,5.59$ and 5.60 respectively to the input terminals of the "frequency translation device I^{*} so that they are of normal frequency f_{n} a term $\mathcal{X}=f / f_{n}$ is introduced. Dividing the numerators and denominators of equations $5.58,5.59$ and 5.60 by $\boldsymbol{\alpha}$ we obtain

$$
\begin{align*}
I_{2} & =\left(E_{g f} / \alpha\right) /\left\{R_{2} /(S \alpha)+j X_{2 f} / \alpha\right\} \\
& =E_{g n} /\left\{R_{2} /(S \alpha)+j X_{2}\right\} \tag{5.61}\\
I_{M} & =\left(E_{g f} / \alpha\left\{\left(\alpha / R_{M f}-j \alpha / X_{M f}\right)\right\}\right. \\
& =E_{g n}\left(I / R_{M}-j I / X_{M}\right) \tag{5.62}
\end{align*}
$$

$$
\begin{align*}
I_{1} & =\left(V_{f} / \alpha-\left(E_{g f} / \alpha\right) /\left(R_{1} / \alpha-j X_{1 f} / \alpha\right)\right. \\
& =\left(V_{f} / \alpha-E_{g n}\right) /\left(R_{1} / \alpha-j X_{1}\right) \tag{5.63}
\end{align*}
$$

The following equalities in the above equations $5.61,5.62$ and 5.63 should be observed :
i) $E_{g n}=E_{g f} / \alpha$. .This means that the air-gap voltage at the variable frequency f when frequency translated by the ratio \propto to the normal frequency f_{n} has its magnitude changed from E_{gf} to E_{gn}, related by the above equality;
ii) $X_{2}=X_{2 f} / \alpha$. This means that since for a given stator current the rotor leakage reactance is proportional to the frequency (Figure 4.11), the reactance X_{2} at the normal frequency $f_{n}(50 \mathrm{c} / \mathrm{s})$ is equal to the product of f_{n} / f and the reactance at the variable frequency $f, X_{2 f}$;
iii) $X_{1}=X_{1 f} / \alpha$. The reason for this equality is exactly the same as that for $X_{2}=X_{2 f} / \alpha$ given in ii).
iv) $\alpha / R_{M f}=1 / R_{M}$. This means that since for a given air-gap flux defined by $\mathrm{E}_{\mathrm{gf}} / \mathrm{f}$, the core loss analogue resistance is proportional to frequency (Figure 4.6), the resistance R_{M} at normal frequency $f_{n}(50 \mathrm{c} / \mathrm{s})$ is equal to the product of f_{n} / f and $R_{M f}$, the resistance at the variable frequency f.
v) $\quad \alpha / X_{M f}=1 / X_{M}$. With the same reasoning as in iv) and with reference to figure 4.7 , the given equality holds good.

Now the stator current is also given by

$$
I_{1}=I_{2}+I_{m}
$$

This current when viewed from the terminals of the normal frequency source is

$$
\begin{align*}
& I_{1}=E_{g n}\left[\left(1 / R_{\mathbb{M}}-j 1 / X_{\mathbb{M}}\right)+1 /\left\{R_{2} /(S \boldsymbol{\alpha})+j X_{2}\right\}\right] \\
& E_{g n}=I_{1} /\left[\left(1 / R_{M}-j 1 / X_{M}\right)+1 /\left\{R_{2} /(S \boldsymbol{\alpha})+j X_{2}\right\}\right] \tag{5.64}
\end{align*}
$$

Equation 5.63 can be re-written as

$$
V_{f} / \alpha=E_{g n}+I_{1}\left(R_{1} / \alpha+j X_{1}\right)
$$

Substituting the value of E_{gn} from equation 5.64 in the above equation

$$
\begin{align*}
V_{f} / \alpha= & I_{1}\left[\left(R_{1} / \alpha+j X_{1}\right)\right. \\
& \left.+\frac{1}{\left(1 / R_{M}-j l / X_{M I}\right)+1 /\left\{R_{2} /(S \alpha)+j X_{2}\right\}}\right] \tag{5.65}
\end{align*}
$$

The Volt/ampere relation given by equation 5.65 is identical to that of a passive bilateral network shown in
figure 5.3, and hence it could be treated as the equivalent circuit of the induction motor with variable frequency supply.

However, it must be emphasised that this equivalent circuit holds true only when the supply voltage V_{f} and the frequency is so adjusted that the equality $E_{g f} / f=E_{g n} / f_{n}$ is maintained for a given stator current, so that the air-gap flux remains constant. Otherwise equations 5.61, 5.62 and 5.63 will not be valid.
5.5 Modification of the Variable

Frequency Equivalent Circuit
for Constant Maximum Torque
operation
The equivalent circuit of the induction motor, figure 5.3, depicts performance under variable frequency supply, but it yet remains to be slightly modified for constant maximum torque operation to ensure that the equality $E_{g f} / f=E_{g n} / f_{n}$ is always maintained.

The air-gap voltage from figure 5.3 is

$$
\begin{align*}
E_{g n} & =V_{f} / \alpha-I_{1}\left(R_{1} / \alpha+j X_{1}\right) \\
& =V_{f} / \alpha-I_{1}\left(R_{1}+j X_{1}\right)-I_{1} R_{1}(1 / \alpha-1) \tag{5.66}
\end{align*}
$$

When the induction motor is operated at normal frequency, $f=f_{n}, V_{f}=V_{n}$ and $\mathcal{X}=1$, then from equation

Figure 5.3 Variable Frequency Simple Equivalent Circuit Of An Induction Motor Under Sinusoidal Excitation And Fixed Maximum Torque Operation.

Figure 5.4 Variable Frequency Simple Equivalent Circuit Of An Induction Motor Under Sinusoidal Excitation Modified For Determination Of Supply Voltage Regulation.
5.66

$$
\begin{equation*}
E_{g n}=V_{n}-I_{1}\left(R_{1}+j X_{1}\right) \tag{5.67}
\end{equation*}
$$

Substituting equation 5.67 in equation 5.66 gives

$$
\begin{equation*}
V_{p} / \alpha=V_{n}+I_{1} R_{1}(1 / \alpha-1) \tag{5.68}
\end{equation*}
$$

If the variable frequency equivalent circuit figure 5.3 is modified to figure 5.4 such that the condition given by equation 5.68 is satisfied, then for a given stator current the equality $E_{g f} / f=E_{g n} / f_{n}$ for constant air-gap flux, and hence constant maximum torque operating condition will always be ensured.

The equivalent circuit of figure 5.4 shows that under variable frequency constant maximum torque operation, the stator resistance, if viewed from the output terminals of the normal frequency source (Figure 5.2), would appear as if it was increased by a value $\mathrm{R}_{1}(1 / \boldsymbol{\alpha}-1)$. Further, to keep the air-gap flux constant at its normal operating value (for a given stator current) the variable frequency stator voltage V_{f} should be boosted by $R_{1} \alpha(1 / \alpha-1) I_{1}$ Volt above $\propto V_{n}$ Volt. It may be noted that if R_{1} was negligibly small, then the variable frequency voltage V_{f} required would have been simply $\propto V_{n}$ Volt.

The voltages in the stator circuit are \propto times the analogue voltages for that part of the circuit, and those for the rotor circuit are $S \boldsymbol{\alpha}$ times the analogue voltages of the equivalent unity effective turns-ratio rotor, whereas the actual machine currents and the analogue currents are invariant.

5.7 Variable Frequency Supply
 Voltage Regulation

It has been shown in section 5.6 that variable frequency constant maximum torque operation is obtainable if the analogue stator supply voltage V_{f} / α is so adjusted that equation 5.66 is satisfied.

The phasor diagram of the equation 5.66 is shown in figure 5.5. From the diagram it can be seen that V_{f} / α is the phasor sum of V_{n} and $I_{I} R_{1}(I / \alpha-I)$, and the latter must be compensated by raising the analogue supply voltage $\mathrm{V}_{\mathrm{f}} / \boldsymbol{\alpha}$ by the same amount, so as to maintain E_{gn} constant for a particular value of stator current I_{I} and for any supply frequency f.

If the power factor is known then $V_{f} / \boldsymbol{\alpha}$ could be calculated for various loads at any given variable frequency from equation 5.68 or from figure 5.5. The power factor angle θ is given by the following equation

Figure 5.5 Stator Voltage Phasor Diagram Of Simple Variable Frequency Equivalent Circuit Of An Induction Motor Under Sinusoidal Excitation And Fixed Maximum Torque Operation.

$$
\begin{align*}
\theta=\tan ^{-1} & {\left[\left(\frac{X_{2}}{R_{M}}-\frac{R_{2}}{S \alpha_{M}}\right) /\left(1+\frac{R_{2}}{S \alpha R_{M}}+\frac{R_{2}}{X_{M}}\right)\right] } \\
& -\tan ^{-1}\left[\left\{\left(X_{1}+X_{2}\right)+\frac{1}{R_{M}}\left(R_{1} X_{2}-\frac{R_{2}}{S \alpha} X_{1}\right)\right.\right. \\
& \left.-\frac{1}{X_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)\right\} /\left\{\left(\frac{R_{2}}{S \alpha}+R_{1}\right)\right. \\
& \left.\left.+\frac{1}{R_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)+\frac{1}{X_{M}}\left(R_{1} X_{2}-\frac{R_{2}}{S \alpha} X_{1}\right)\right\}\right]
\end{align*}
$$

From figure 5.5. the variable frequency analogue voltage required is

$$
\begin{array}{r}
V_{f} / \alpha=\left\{V_{n}^{2}+I_{1}^{2} R_{1}(1 / \alpha-1)^{2}+\right. \\
2 V_{n} I_{1} R_{1}(1 / \alpha-1) \tag{5.70}\\
\cos \theta\}^{\frac{1}{2}}
\end{array}
$$

θ changes with slip (Equation 5.69) so that this method of finding V_{f} / α is tedious and a simple graphical method is therefore used. Equation 5.66 in terms of magnitudes can be rewritten as

$$
\begin{equation*}
\left|E_{g n}\right|=\left\{\left(V_{f} / \alpha-I_{1} R_{1} / \alpha\right)^{2}+\left(I_{1} X_{1}\right)^{2}\right\}^{\frac{1}{2}} \tag{5.71}
\end{equation*}
$$

If the variable frequency analogue voltage $\mathrm{V}_{\mathrm{f}} / \alpha$ is kept constant at V_{n}, then the air-gap analogue voltage $E_{g n}$ would vary according to

$$
\begin{equation*}
\left|E_{g n}\right|=\left\{\left(V_{n}-I_{1} R_{1} / \boldsymbol{\alpha}\right)^{2}+\left(I_{1} X_{1}\right)^{2}\right\}^{\frac{1}{2}} \tag{5.72}
\end{equation*}
$$

Plotting the value of $\left|E_{g n}\right|$, for various constant values of $\boldsymbol{\alpha}$, against stator current I_{I} gives a family of curves $A B, A C, A D, A E$, etc, as shown in figure 5.6. At normal frequency $\boldsymbol{\alpha}=1$, the air-gap voltage $\mathbb{F}_{\mathrm{gn}} \mid$ varies according to the curve $A B$. For other frequencies $\mathcal{X}_{2} f_{n}$, $\propto_{3} f_{n}, \propto_{4} f_{n}$, etc. the variation of $\left|E_{g n}\right|$ is represented by $A C, A D, A E$, etc., when the analogue stator is impressed with a constant voltage of V_{n}. In order to ensure that constant air-gap flux for a given stator current is maintained irrespective of variation of frequency, the variable frequency analogue supply voltages $v_{f 2} / \alpha_{2}, v_{f 3} / \alpha_{3}$, $V_{f 4} / \alpha_{4}$ are boosted above the value V_{n}, such that the variable frequency air-gap analogue voltages represented by $A B, A C, A D, A E, e t c$, coincide. The boost required, above V_{n}, say for a frequency $\mathcal{\alpha}_{5} f_{n}$ in terms of analogue voltage, is the difference between the ordinates of the curve $A B$ and AF. When this analogue voltage boost is added to V_{n} we obtain the analogue supply voltage $\mathrm{V}_{\mathrm{f}_{5}} / \alpha_{5}$ shown by the curve AG. This voltage, when multiplied by $\boldsymbol{\alpha}_{5}$, results in the actual stator supply voltage $V_{f 5}$ required when the machine is operating at a frequency $f=\mathcal{\alpha}_{5}{ }^{f} n$ (Figure 5.6).

Calculation was carried out using an I.B.M. 7090 digital computer from which the variable frequency supply voltage V_{f} was obtained and plotted in figure 5.6.

5.8 Performance Calculations from Variable Frequency
Simple Equivalent Circuit
The impedances viewed by the analogue voltage V_{n} are given by (Figure 5.4)

$$
\begin{equation*}
\text { Analogue stator impedance } Z_{1}=R_{1}+j X_{1} \tag{5.73}
\end{equation*}
$$

$$
" \text { " rotor } " \quad " z_{2}=R_{2}(S \propto C)+j X_{2}(5.74)
$$

$$
\begin{equation*}
\text { " " magnetizing admittance } Y_{\mathbb{M}}=1 / R_{\mathbb{M}}+j l / X_{M} \tag{5.75}
\end{equation*}
$$

$$
\begin{aligned}
\therefore \quad V_{n} & =E_{g n}+I_{I} Z_{I} \\
& =E_{g n}+\left(I_{2}+I_{M}\right) Z_{I} \\
& =E_{g n}+Z_{I} E_{g n}\left(I / Z_{2}+Y_{M}\right) \\
& =E_{g n}\left(Z_{I}+Z_{2}+Z_{I} Z_{2} Y_{M}\right) / Z_{2}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad E_{g n}=Z_{2} V_{n} /\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right) \tag{5.76}
\end{equation*}
$$

(Equation 5.77 is given in table 5.2)

$$
\begin{equation*}
I_{2}=E_{g n} / Z_{2}=V_{n}\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right) \tag{5.78}
\end{equation*}
$$

$$
\begin{equation*}
I_{M}=E_{g n} Y_{M}=V_{n} Y_{M} Z_{2}\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right) \tag{5.79}
\end{equation*}
$$

$$
\begin{equation*}
I_{1}=I_{2}+\tilde{I}_{M} \tag{5.80}
\end{equation*}
$$

Table 5.2 VARIABIE FREQUENCY
PERFORNANCE EQUATIONS FOR SPACE FUNDAMENTAL BND SINUSOIDAL EXCTIATION

Items	Analogue	Actual
$\underset{E_{g n}}{\text { Air-gap }}$	$\begin{array}{r} Z_{2} V_{n} /\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{\mathbb{M}}\right) \\ -(5.76) \end{array}$	$\begin{gathered} \propto Z_{2} V_{n} /\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right) \\ - \\ -(5.77) \end{gathered}$
Rotor current I_{2}	$\mathrm{V}_{\mathrm{n}} /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right.$	v_{r}
Magnetizing current I_{M}	$\begin{gathered} V_{n} Y_{M} Z_{2} /\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right) \\ \\ -(5.79) \end{gathered}$	$V_{n} Y_{M} Z_{2} /\left(Z_{1}+Z_{2}+Z_{1} Z_{2} Y_{M}\right)$ $-(5.79)$
$\begin{aligned} & \text { Stator current } \\ & \mathrm{I}_{1} \end{aligned}$	$\begin{aligned} I_{2} & +I_{M I} \\ & -(5.80) \end{aligned}$	$-(5.80)$
Rotor input power $\mathrm{P}_{2 \text { in }}$	$\begin{aligned} & 2^{I_{2}}{ }^{2} R_{2} /(S \propto) \\ &-(5.81) \end{aligned}$	$\begin{aligned} m_{2} I_{2} & R_{R_{2}} / S \\ & -(5.82) \end{aligned}$
Rotor copper loss P_{cu}	$\begin{aligned} & 2^{I_{2}}{ }^{2} R_{2} / \infty \\ &-(5.83) \end{aligned}$	$\begin{aligned} & m_{2} I_{2}{ }^{2} R_{2} \\ &-(5.84) \end{aligned}$
Rotor powe output P	$\begin{array}{r} m_{2} I_{2}{ }^{2} R_{2}(1-S) /(S \infty \\ -(5.85 \end{array}$	$-(5.86)$
Core loss P	$\begin{aligned} m_{1} E_{g n} & R_{M} \\ & -(5.87) \end{aligned}$	$\begin{gathered} \alpha_{1}^{M_{1}} E_{\mathrm{gn}}^{2} / \mathrm{R}_{\mathbb{M}} \\ -(5.88) \end{gathered}$
$\begin{aligned} & \text { Stator } 0 \\ & \text { loss } \mathrm{P} \end{aligned}$	$\begin{aligned} m_{1} I_{1}^{2} & R_{1} / \alpha \\ & -(5.89 \end{aligned}$	$\begin{aligned} & m_{1} I_{1}{ }^{2} R_{1} \\ &-(5.90) \end{aligned}$
Iine to neutral stator supply voltage	$\begin{gathered} V_{f} / \propto=V_{n}+I_{1} R_{1}(1 / \alpha-1) \\ -(5.68) \end{gathered}$	$\begin{aligned} V_{f}=\propto & V_{n}+I_{1} R_{1}(1-\infty) \\ & -(5.91) \end{aligned}$

Items	Analogue	Actual
Input VoltAmpere	$\begin{gathered} m_{I}\left\{v_{n}+I_{I} R_{I}(I / x-I)\right\} \\ x \operatorname{conj} \cdot\left(I_{1}\right) \\ -(5.92) \end{gathered}$	$\begin{gathered} m_{1}\left\{\alpha V_{n}+I_{1} R_{1}(1-\alpha)\right\} \\ x \operatorname{conj} \cdot\left(I_{1}\right) \\ -(5.93) \end{gathered}$
Normal frequency synchronous speed torque, electromagnetic in ib-ft. T.	$\begin{aligned} & \mathrm{N}_{\mathrm{ns}}= 120 \mathrm{f}_{\mathrm{n}} / \mathrm{P} \\ &-(5.94) \\ & \frac{33,000}{(\mathrm{BX} \times 746)} \frac{\mathrm{m}_{2}}{\mathrm{~N}_{\mathrm{ns}}} \mathrm{I}_{2}{ }^{2} \frac{\mathrm{R}_{2}}{\mathrm{~S} \alpha} \\ &-(5.96) \end{aligned}$	$\begin{aligned} & \mathbb{N}_{s}=120 \propto f_{n} / \mathrm{P} \\ &-(5.95) \\ & \frac{33,000}{2 \pi \times 746} \frac{m_{2}}{\mathbb{N}_{n s}} I_{2}^{2} \frac{R_{2}}{s \propto} \\ &-(5.96) \end{aligned}$

The various performance equations are given in table 5.2. The power and voltages are not invariant in the variable frequency simple analogue figure 5.4 and the actual machine, because of the frequency translation from variable frequency f to normal frequency f_{n}. The actual power and voltages (referred to the stator) are obtained by multiplying those from the analogue by \mathcal{C}.

By introducing equivalent circuit parameters in the various performance equations, various interesting conclusions can be derived. The rotor current given by equation 5.78 rewritten for convenience

$$
\begin{align*}
I_{2}= & \frac{V_{n}}{Z_{2}+Z_{1}+Z_{2} Z_{1} Y_{M}} \\
= & V_{n} /\left[\left\{\left(\frac{R_{2}}{S \alpha}+R_{1}\right)+\frac{I}{R_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)\right.\right. \\
& \left.+\frac{I}{X_{M}}\left(R_{1} X_{2}+\frac{R_{2} X_{1}}{S \alpha}\right)\right\}+j\left\{\left(X_{1}+X_{2}\right)\right. \\
& \left.\left.+\frac{I}{R_{M M}}\left(R_{I} X_{2}+\frac{R_{2} X_{I}}{S \alpha}\right)+\frac{I}{X_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{I} X_{2}\right)\right\}\right] \tag{5.97}
\end{align*}
$$

The scalar value of the rotor current is given by

$$
\begin{align*}
\left|I_{2}\right|=V_{n} /[& \left\{\left(\frac{R_{2}}{S \alpha}+R_{1}\right)+\frac{I}{R_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)\right. \\
& \left.+\frac{I}{X_{M}}\left(X_{2} R_{I}+\frac{R_{2} X_{1}}{S \alpha}\right)\right\}^{2}+\left\{\left(X_{1}+X_{2}\right)\right. \tag{5.98}\\
& \left.\left.+\frac{I}{R_{M}}\left(R_{1} X_{2}-\frac{R_{2} X_{I}}{S \alpha}\right)+\frac{I}{X_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)\right\}^{2}\right]^{\frac{1}{2}}
\end{align*}
$$

so that

$$
\begin{equation*}
I_{2}=V_{n} /(A)^{\frac{1}{2}} \tag{5.99}
\end{equation*}
$$

where

$$
\begin{align*}
A & {\left[\left\{\left(\frac{R_{2}}{S \alpha}+R_{1}\right)+\frac{1}{R_{M}}\left(\frac{R_{1} R_{2}}{S \alpha}-X_{1} X_{2}\right)\right.\right.} \\
& \left.+\frac{1}{X_{M}}\left(X_{2} R_{1}+\frac{R_{2} X_{I}}{S \alpha}\right)\right\}^{2}+\left\{\left(X_{1}+X_{2}\right)\right. \\
& \left.\left.+\frac{1}{R_{M}}\left(R_{1} X_{2}+\frac{R_{2} X_{1}}{S \alpha}\right)+\frac{1}{X_{M}}\left(\frac{R_{1} R_{2}}{\alpha S}-X_{1} X_{2}\right)\right\}^{2}\right] \tag{5.100}
\end{align*}
$$

The electromagnetic torque given by, equation 5.96 (Table 5.2) is

$$
\begin{equation*}
T=\{33,000 /(2 \times 746\}\}\left\{m_{2} /\left(N_{n s}\right)\right\}\left|I_{2}\right|^{2 \cdots R_{2}} /(\mathrm{S} \alpha) \tag{5.96}
\end{equation*}
$$

where $N_{n s}=$ normal frequency synchronous speed
Substituting equation 5.99 in equation 5.96 gives

$$
\begin{equation*}
\mathrm{T}=\{33,000 /(2 \times 746)\}\left\{\mathrm{m}_{2} /\left(\mathrm{N}_{\mathrm{ns}}\right)\right\} \mathrm{V}_{\mathrm{n}}^{2}\left\{\mathrm{R}_{2} /(\mathrm{S} \alpha)\right\} / \mathrm{A} \tag{5.101}
\end{equation*}
$$

The equation 5.101 is large and requires simplification. The terms containing R_{M} and X_{N} are small compared
with the others and may be neglected, so that

$$
\begin{align*}
T & =\{33,000 /(2 \times 746)\}\left(m_{2} / N_{n s}\right) \frac{V_{n}{ }^{2} R_{2} /(\mathrm{s} \propto)}{\left\{\mathrm{R}_{2} /(\mathrm{S} \alpha)+\mathrm{R}_{1}\right\}^{2}+\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)^{2}} \\
& =\{33,000 /(2 \times 746)\}\left(\mathrm{m}_{2} / \mathrm{N}_{\mathrm{ns}}\right)\left(\mathrm{V}_{\mathrm{n}}^{2} / \mathrm{R}_{2}\right) \\
& \mathrm{S} \propto /\left\{\left(I+\mathrm{K}_{1} \mathrm{~S} \propto\right)^{2}+\mathrm{K}_{2}^{2}(\mathrm{~S} \alpha)^{2}\right\} \tag{5.102}
\end{align*}
$$

where $K_{1}=R_{1} / R_{2}$
and

$$
\begin{equation*}
K_{2}=\left(X_{1}+X_{2}\right) / R_{2} \tag{5.104}
\end{equation*}
$$

For small slips $S \rightarrow 0$

$$
\left(I+K_{I} S \alpha\right)^{2} \rightarrow 1
$$

and

$$
K_{2}{ }^{2} S^{2} \alpha^{2} \rightarrow 0
$$

\therefore From equation 5.100

$$
\begin{equation*}
\underset{S \rightarrow 0}{T}=\{33,000 /(2 \pi 746)\}\left(m_{2} / N_{n s}\right)\left(V_{n}^{2} / R_{2}\right) \mathrm{S} \infty \tag{5.105}
\end{equation*}
$$

Equation 5.105 shows that the torque is a linear function of frequency for a fixed value of slip, when the slip is low.

At standstill $S=1$. The starting torque is therefore

$$
\begin{array}{r}
\underset{S}{T}=I=\left\{33,000 /(2 \pi 746\}\left(\mathrm{m}_{2} / \mathrm{N}_{\mathrm{ns}}\right)\left(\mathrm{v}_{\mathrm{n}}^{2} / \mathrm{R}_{2}\right)\right. \\
{\left[\alpha /\left\{\left(1+\mathrm{K}_{1} \alpha\right)^{2}+\left(\mathrm{K}_{2} \alpha\right)^{2}\right\}\right]} \tag{5.106}
\end{array}
$$

The frequency at which maximum torque occurs during starting can be obtained from $\frac{d T}{d \infty}=0$ where T is given by equation 5.106.

This yields

$$
\begin{align*}
\mathcal{N} & = \pm I /\left\{2\left(K_{1}+K_{2}\right)\right\}^{\frac{1}{2}} \\
\text { or } \quad \mathrm{I} & =\mathrm{f}_{n}\left[R_{2} /\left\{2\left(R_{1}+X_{1}+X_{2}\right)\right\}\right]^{\frac{1}{2}} \tag{5.107}
\end{align*}
$$

Equation 5.107 shows that if a machine has to be designed to start at low frequency against full-load torque, the stator resistance and reactance should be high. A compromise with the normal running performance and stator copper loss is necessary.

For large slips $S \rightarrow \infty$

$$
\left(I+K_{1} S \propto\right)^{2} \rightarrow\left(K_{1} S \propto\right)^{2}
$$

Therefore torque at large slips from equation 5.102 is given by

$$
{\underset{S}{T \rightarrow \infty}}_{T}=\{33,000 /(2 \pi 746)\}\left(\mathrm{m}_{2} / \mathrm{N}_{\mathrm{ns}}\right)\left(\mathrm{V}_{\mathrm{n}}^{2} / \mathrm{R}_{2}\right) /\{
$$

$$
\begin{equation*}
\left.\mathrm{s} \alpha\left(\mathrm{~K}_{1}^{2}+\mathrm{K}_{2}^{2}\right)\right\} \tag{5.108}
\end{equation*}
$$

The torque for the same value of slip is less at high frequency than at low frequency and the relationship between torque and slip (constant α), and between torque and frequency (constant S) are both rectengular hyberbolae.

The slip at which maximum torque occurs can be determined by differentiating the expression for torque given by equation 5.101 with respect to slip and equating it to zero, and then eliminating the terms containing $R_{\mathbb{M}}$.

This yields the slip for maximum torque as

$$
\begin{equation*}
S= \pm\left(R_{2} / \alpha\right) /\left\{\frac{\left(1+X_{1} / X_{M M}\right)^{2}+\left(R_{1} / X_{M}\right)^{2}}{R_{1}^{2}\left(1+X_{2} / X_{M}\right)^{2}+\left(X_{1}+X_{2}+X_{1} X_{2} / X_{M}\right)^{2}}\right\}^{\frac{1}{2}} \tag{5.109}
\end{equation*}
$$

The positive sign indicates motor action, and the negative sign indicates generator action. The maximum torque is obtained by substituting equation 5.109 in equation 5.101 giving

$$
\begin{equation*}
T=\left\{(33,000 /(2 \pi 746)\}\left(\mathrm{m}_{2} / \mathrm{N}_{\mathrm{ns}}\right)\left(\mathrm{V}_{\mathrm{n}}^{2} / \mathrm{K}_{3}\right) / \mathrm{K}_{4}\right. \tag{5.110}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{3}=\left\{\frac{\left(1+X_{1} / X_{M}\right)^{2}+\left(R_{1} / X_{M}\right)^{2}}{R_{1}^{2}\left(1+X_{2} / X_{M}\right)^{2}+\left(X_{1}+X_{2}+X_{1} X_{2} / X_{M}\right)^{2}}\right\}^{\frac{1}{2}} \tag{5.111}
\end{equation*}
$$

and

$$
\begin{align*}
K_{4}=\left[\left\{\left(1 / K_{3}\right.\right.\right. & \left.+R_{1}\right)+\left(R_{1} / K_{3}-X_{1} X_{2}\right) / R_{M} \\
& +\left(R_{1} X_{2}+X_{1} / K_{3}\right) / X_{M} \mathbb{R}^{2}+\left\{\left(X_{1}+X_{2}\right)\right. \\
& \left.\left.+\left(R_{1} X_{2}+X_{1} / K_{3}\right) / R_{M}-\left(R_{3} / K_{3}-X_{1} X_{2}\right) / X_{1}\right\}^{2}\right]^{\frac{1}{2}} \tag{5.112}
\end{align*}
$$

The maximum torque is independent of frequency but the slip at which it occurs is inversely proportional to frequency (Equation 5.109).

Equations 5.105, 5.108 and 5.109 contain the term $s \propto$.

$$
\text { Now } S=\left(\mathbb{N}_{S}-\mathbb{N}\right) / \mathbb{N}_{S}=\left(\mathbb{N}_{S}-\mathbb{N}\right) /(120 f / P)
$$

and

$$
\alpha=f / f_{n}
$$

Therefore $\mathrm{S} \boldsymbol{\alpha}=\left\{P /\left(\operatorname{l2Of}_{\mathrm{n}}\right)\right\}\left(\mathbb{N}_{\mathrm{S}}-N\right)$, or in other words the term $\mathrm{S} \boldsymbol{\alpha}$ is proportional to the decrement $\Delta \mathrm{N}$ of the rotor speed from the synchronous speed. Hence equations 5.105 and 5.108 indicate that at low and high slips, the torque developed is respectively, directly and inversely proportional to this decrement $\Delta \mathbb{N}$ of rotor speed, irrespective of rotor
slip S and supply frequency f. Similarly equation 5.109 indicates that maximum torque occurs at a definite decrement $\Delta \mathbb{N}$ irrespective of rotor slip and supply frequency.

5.9 Variable Frequency Equivalent Circuit for Constant Maximum Torque Operation Accounting for Space Fundamental and Space Harmonic.M.M.Fs.

The method by which the variable frequency simple analogue shown figure 5.4 for the induction motor (Section 5.5) was derived, may be applied to figure 5.1. This results in figure 5.7 which is a passive circuit analogue of an induction motor under variable frequency operation, taking into account the space fundamental airgap m.m.f. as well as space harmonics. The space fundamental part of figure 5.7 is identical to figure 5.4 , and figure 5.7 is an extension of figure 5.4 to include the harmonic rotor branches.

5.10 Performance Calculations from

 a Variable Frequency Extended Equivalent CircuitReferring to figure 5.7

$$
\begin{align*}
& \text { The rotor } \nu^{\text {th }} \text { space harmonic analogue impedance } \\
& \mathrm{Z}_{2 y}=\mathrm{R}_{2 y}\left(\mathrm{~S}_{\nu} \alpha_{1}\right)+j \mathrm{X}_{2} \tag{5.113}
\end{align*}
$$

Figure 5.7 Variable Frequency Sinusoidally Excited Induction Motor Equivqlent Circuit Taking Space Fundamental And Space Harmonics In Account. Supply Voltage Regulated For Fixed Maximum Torque Operation.
where $R_{2 \nu}, X_{2 \nu}$ and S_{ν} are given by equations (5.49, 5.50), (5.48) and (5.51 and 5.52) respectively.

The analogue impedance of the $\mathcal{\nu}^{\text {th }}$ space harmonic
link is

$$
\begin{gather*}
z_{A \nu}=\left\{-x_{2 \nu} x_{M \nu}+j x_{\text {Ni }} R_{2 \nu} /\left(s_{\nu} \alpha\right)\right\} /\left\{R_{2} /\left(s_{\nu} \alpha\right)\right. \\
\left.+j\left(x_{2 \nu \nu}+X_{\text {Mi }}\right)\right\} \tag{5.114}
\end{gather*}
$$

where $X_{\mathbb{M} \nu}$ is given by equations 5.38 and 5.39 .
Total impedance of the harmonic chain is

$$
\begin{equation*}
Z_{A}=\sum_{\nu} Z_{A \nu} \tag{5.115}
\end{equation*}
$$

Impedance including the core loss analogue R_{M} is

$$
\begin{equation*}
z_{B}=R_{M} z_{A} /\left(R_{M}+z_{A}\right) \tag{5.116}
\end{equation*}
$$

The analogue impedance viewed by V_{n} is

$$
\begin{equation*}
Z_{C}=\left(R_{I}+j X_{1}\right)+Z_{B} \tag{5.117}
\end{equation*}
$$

The analogue input impedance referred to the variable frequency analogue voltage $\mathrm{v}_{\mathrm{f}} / \boldsymbol{\propto}$ is

$$
\begin{equation*}
Z_{D}=R_{1}(1 / \alpha-1)+Z_{C} \tag{5.118}
\end{equation*}
$$

The various performance equations are given in table 5.3. The performance as predicted by these means and as measured is compared in chapter 8.

Table 5.3 VARIABLE FREQUENCY SINUSOIDALIY EXCITED INDUCTION

MOTOR PEPWOLANCE EUATIONS ACCOUTTING FOR SPACE FUNDAMENYAI AND SPACE HARMONICS

Items	Analogue	Actual
```Net rotor aapper loss P}\mp@subsup{P}{cu2}{```	$\begin{aligned} & \sum_{\nu} p_{\text {cu2 }} \\ & -(5.132) \end{aligned}$	$\begin{aligned} & \sum_{21} P_{c u 2} \\ & \quad-(5.133) \end{aligned}$
Net rotor ${ }^{\mathrm{P}_{20}}$ power output	$\begin{aligned} & \sum_{\nu \nu} P_{20 \nu} \\ & -(5.134) \end{aligned}$	$\begin{aligned} & \sum_{2 P} 20 \nu \\ & -(5.135) \end{aligned}$
Core loss $\mathrm{P}_{\mathrm{FE}}$	$\begin{aligned} m_{1} E_{g n} & { }^{2} / R_{M} \\ & -(5.136) \end{aligned}$	$\begin{aligned} \alpha m_{I} E_{g n} & \\ & -(5.137) \end{aligned}$
Stator copper   loss $P_{\text {cul }}$	$\begin{aligned} & \mathrm{m}_{1} \mathrm{I}_{1}{ }^{2} \mathrm{R}_{1} / \alpha \\ &-(5.138) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{1} \mathrm{I}_{1}{ }^{2} \mathrm{R}_{1} \\ & -(5.139) \end{aligned}$
```Iine to neutral supply voltage```	$\begin{aligned} \frac{V_{f}}{\alpha}=V_{n} & +I_{1} R_{1}\left(\frac{1}{\alpha}-1\right) \\ & -(5.140) \end{aligned}$	$\begin{aligned} V_{f}=\alpha V_{n} & +I_{I} R_{I}(1-\infty) \\ & -(5.14 I) \end{aligned}$
Volt-ampere input	$\begin{array}{r} \left(V_{f} / \alpha\right) \operatorname{conj} \cdot\left(I_{I}\right) \\ -(5.142) \end{array}$	$\begin{array}{r} \left(V_{f}\right) \operatorname{conj} \cdot\left(I_{1}\right) \\ -(5.143) \end{array}$
Electromagnetic torque in lbft produced. by $y^{\text {th }}$ space harmonic T_{ν}	$\begin{array}{r} \frac{33,000}{2 \pi 746} \frac{\mathrm{~m}_{2}}{\mathrm{~N}_{\mathrm{ns}}} y_{2 \nu}{ }^{2} \frac{\mathrm{R}_{2 \nu}}{\mathrm{~S}_{\nu \boldsymbol{\nu}}} \\ -(5.144) \end{array}$	$\begin{aligned} & \frac{33,000}{2 \pi 746} \frac{\mathrm{~m}_{2}}{\mathrm{~N}_{\mathrm{ns}}} \nu I_{2 \nu} \nu^{2} \frac{\mathrm{R}_{2 \boldsymbol{y}}}{\mathrm{~S}_{\nu} \boldsymbol{\infty}} \\ &-(5.144) \end{aligned}$
Net electromagnetic torque T	$\sum_{\nu}^{T} \nu$	$\begin{aligned} & \sum_{2} \nu \\ & -(5.145) \end{aligned}$

CHAPTER 6

$\frac{\text { TIME HARIIONIC ANALYSIS OF THE }}{\text { INVERTOR-FED INDUCTION MOTOR }}$ INVERTOR-FED INDUCTION MOTOR

Machine torques and losses are dependent upon supply wave-form. Iron losses increase if the wave-form of the air-gap voltage is flat topped and decrease if it is peaky. Copper losses increase whenever time hamonics are present. Analysis of the idealized voltage wave-form at the output of the thyristor invertor shows (Appendix II) the presence of time harmonics of the order

$$
\begin{equation*}
\gamma=(1 \pm 6 \mathrm{~K}) \tag{6.1}
\end{equation*}
$$

where

$$
\mathrm{K}=0,1,2,3 \ldots \text { etc. }
$$

Those harmonics which have positive values of γ viz $7^{\text {th }}, 13^{\text {th }}, 19^{\text {th }}$, etc, have the same phase sequence as that of the time fundamental, and as such they produce forward torques by reacting with the space fundamental flux produced by them.

On the contrary, those harmonics which have negative values of γ, viz $-5^{\text {th }},-11^{\text {th }},-17^{\text {th }}$, have an opposite phase sequence to that of the time fundamental and as such they produce backward torques by reacting with the space
fundamental flux produced by them. Since the amplitudes of the harmonics of negative phase sequence are in general greater than that of the positive phase sequence, slight decrement of torque produced by the motor, as compared to equivalent sinusoidal operation, is expected. Those time harmonics γ which have the same numerical value as that of the space harmonic (), always produce forward torques irrespective of their phase sequence. Moreover, this combination produces fluxes which have the same speed as that produced by the time fundamental voltage and space fundamental mom.f. The relative synchronous speeds and the direction of rotation of the various combinations of γ and $)$ are shown in table 6.1.

6.1 Iron Loss in the Main Flux Path

The increase of iron loss occuring when the induction motor is fed from the invertor is due to the increase of the magnitude of the air-gap flux \emptyset_{m} in the machine. This increase of the air-gap flux ϕ_{m} is due to two reasons:
i) since the air-gap flux $\left.\phi_{m}=E_{g f(\text { non } \sim}\right) /\left(4 X_{f} f N_{I} K_{W I}\right)$
(Equation 5.5), for a given frequency f and air-gap r.m.s. voltage $E_{\left.g f_{s}, \ldots, n\right)}$ the flux \varnothing_{m} depends inversely on the form factor K_{f} of the air-gap voltage. For sinusoidal operation

Table 6.1 SYNCHRONOUS SPEEDS (IN PER UNIT) OF MACHINE AIR-GAP FIELD HARIMONICS FOR VARIOUS TIME HARMONICS OF INVERTOR SUPPIY

2	\perp	-5	7	-11	13	-17	19	-23	25	-29	31	-35	37
1	1	-5	7	-11	13	-17	19	-23	25	-29	31	-35	37
-5	$\frac{-1}{5}$	1	$\frac{-7}{5}$	$\underline{71}$	$-\frac{13}{5}$	$\frac{17}{5}$	$-\frac{19}{5}$	$\frac{23}{5}$	-25	$\frac{29}{5}$	- $\frac{31}{5}$	$\frac{35}{5}$	$\frac{-37}{5}$
7	$\frac{1}{7}$	$-\frac{5}{7}$	1	-11	13	-17	$\frac{19}{7}$	$\frac{23}{7}$	$\frac{25}{7}$	$\frac{29}{7}$	$\frac{31}{7}$	$-\frac{35}{7}$	$\frac{37}{7}$
-11	$\frac{-1}{11}$	$\frac{5}{11}$	$\frac{-7}{11}$	1	-13	17	-19	$\frac{23}{11}$	-25	$\frac{29}{11}$	- -31	$\frac{35}{11}$	-37
13	$\frac{1}{13}$	$\frac{-5}{13}$	$\frac{7}{13}$	$-\frac{11}{13}$	1	$\frac{-17}{13}$	$\frac{19}{13}$	$\frac{-23}{13}$	$\frac{25}{13}$	$\frac{-29}{13}$	$\frac{31}{13}$	$-\frac{35}{13}$	$\frac{37}{13}$
-17	$\frac{-1}{17}$	$\frac{5}{17}$	$\frac{-7}{17}$	$\frac{11}{17}$	$\frac{-13}{17}$	2	$\frac{-19}{17}$	$\frac{23}{17}$	$-\frac{25}{17}$	$\frac{29}{17}$	$\left\lvert\, \frac{-31}{17}\right.$	$\frac{35}{17}$	$-\frac{37}{17}$
19	$\frac{1}{19}$	$\frac{-5}{19}$	$\frac{7}{19}$	- $\frac{11}{19}$	$\frac{13}{19}$	$-\frac{17}{19}$	1	-23	$\frac{25}{19}$	$\frac{-29}{19}$	$\frac{31}{19}$	$-\frac{35}{19}$	$\frac{37}{19}$
-23	$\frac{-7}{23}$	$\frac{5}{23}$	$\frac{-7}{23}$	$\frac{11}{23}$	$-\frac{13}{23}$	$\frac{17}{23}$	$\frac{-19}{23}$	1	$\frac{-25}{23}$	$\frac{29}{23}$	$\frac{-2}{23}$	$\frac{35}{23}$	$-\frac{37}{23}$
25	$\frac{1}{25}$	$\frac{-1}{25}$	$\frac{7}{25}$	$\left\lvert\,-\frac{11}{25}\right.$	$\frac{13}{25}$	$-\frac{17}{25}$	$\frac{19}{25}$	$-\frac{23}{25}$	1	$\frac{-29}{25}$	$\frac{31}{25}$	- $\frac{35}{25}$	$\frac{37}{25}$
-29	$\frac{-7}{29}$	$\frac{5}{29}$	$\frac{-7}{29}$	$\frac{11}{29}$	$-\frac{13}{29}$	$\frac{17}{29}$	$-\frac{19}{29}$	$\frac{23}{29}$	$-\frac{25}{29}$	1	$\frac{-31}{29}$	$\frac{35}{29}$	- $\frac{37}{29}$
31	$\frac{1}{31}$	$\frac{-5}{3 I}$	$\frac{7}{31}$	$\left\lvert\,-\frac{11}{3 I}\right.$	$\frac{13}{31}$	$-\frac{17}{31}$	$\frac{19}{31}$	$\frac{-23}{31}$	$\frac{25}{31}$	$-\frac{29}{3 I}$	1	$-\frac{35}{31}$	$\frac{37}{31}$
-35	$\frac{-1}{35}$	$\frac{1}{7}$	$\frac{-7}{35}$	$\frac{11}{35}$	$-\frac{13}{35}$	$\frac{17}{35}$	$-\frac{19}{35}$	$\frac{23}{35}$	$-\frac{5}{7}$	$\frac{29}{35}$	$-\frac{31}{35}$	1	- $\frac{37}{35}$
37	$\frac{1}{37}$	$\frac{-5}{37}$	$\frac{7}{37}$	$-\frac{11}{37}$	$\frac{13}{37}$	- 17	$\frac{19}{37}$	$-\frac{23}{37}$	$\frac{25}{37}$	-29	$\frac{31}{37}$	$-\frac{35}{37}$	1

$K_{f}=1.11$. As the air-gap voltage becomes more flat-topped K_{f} decreases and hence $\not \varnothing_{m}$ increases. Since the stator Ieakage impedance is very much smaller than the magnetizing impedance (Figure 4.I) it can be assumed that the waveform of the line to neutral air-gap voltage is almost identical to that of the idealized line to neutral voltage supplied by the invertor. It can be seen from appendix II that K_{f} for such a wave-form is 1.06 . Therefore for a given frequency and rom.s. air-gap voltage, the invertor supply would cause $100(1-1 . I I / I .06)=4.8 \%$ increase of the main flux;
ii) in order to produce identical torque at a given slip the rom.s. value of the fundamental component of the air-gap voltage should be equal to its rom.s. value with sinusoidal supply. This requires an increase in the r.m.s. value of the non-sinusoidal air-gap voltage by a factor $\pi / 3=1.048$ or 104.8%, thereby causing a further increase of the air-gap flux by the same factor.

For equivalent operation the invertor supply causes the air-gap flux to increase to a total of (1.048 x 1.048) x $100=109.9 \%$. This increase of flux \varnothing_{m} causes an increase in iron loss.

6.1.1 Hysteresis Ioss

It has been show, in equation 5.6, that for a
given r.m.s. line to neutral voltage E_{gf}, of form factor K_{f}, and frequency f, the air-gap flux density in a given machine is

$$
B_{m}=E_{g f(\text { non } \sim)} /\left(4 K_{f} \mathbb{N}_{1} K w_{1} f A\right)
$$

(Equation 5.6)

Writing the rom.s. value of the non-sinusoidal airgap voltage as $E_{g(n o n \sim)}$ and expressing it as a constant C times the r.m.s. value of its time fundamental $\mathbb{E}_{g l}$

$$
\begin{equation*}
\left.\mathrm{E}_{\mathrm{g}(\text { non } \sim}\right)=\mathrm{CE}_{\mathrm{gl}} \tag{6.2}
\end{equation*}
$$

Substituting equation 6.2 in equation 5.6 gives

$$
\begin{equation*}
\mathrm{B}_{\mathrm{m}}=\mathrm{CE}_{\mathrm{gl}} /\left(4 \mathrm{~K}_{\mathrm{f}} \mathrm{~N}_{1} \mathrm{KW}_{1} \mathrm{fA}\right) \tag{6.3}
\end{equation*}
$$

Substituting equation 6.3 in the steinmete's hysteresis loss equation 5.1 we obtain the hysteresis loss due to non-sinusoidal wave-form

$$
\begin{align*}
& \left.W_{h(n o n \sim}\right)=M_{h^{\prime}} C^{n} E_{g 1}{ }^{n} /\left\{\left(4 N_{1} K_{w_{1}} A\right)^{n} K_{f} n_{f}{ }^{n}\right\} \\
& =\eta_{h} C^{n_{E l}}{ }_{g l} n_{K_{f}}{ }^{-n_{f}(I-n)} /\left(4 N_{1} K_{W} A\right)^{n} \\
& =\mathcal{H}_{h} C^{n^{n}} K_{f}^{-n}\left(E_{g I} / f\right)^{n_{f} /\left(4 N N_{1} K w_{1} A\right)^{n}} \tag{6.4}
\end{align*}
$$

Hysteresis loss simulating resistance under non-sinusoidal supply condition is given by

$$
\begin{align*}
& \left.R_{h(\text { non } \sim)}=E_{g}{ }^{2} \text { non } \sim\right) / W_{h(\text { non } \sim)} \\
& \left.=\mathrm{E}_{\mathrm{gl}}{ }^{2} \mathrm{C}^{2} / \mathrm{N}_{\mathrm{h}} \text { (conN }\right) \\
& =E_{g I}{ }^{2} C^{2}\left(4 N_{I} K_{w_{I}} A\right)^{n}\left(E_{g I} / f\right)^{-n} /\left(\eta_{h} C^{n_{K}}{ }_{f}^{-n_{f}}\right) \\
& \left.=\left(4 N_{1} \mathrm{KW}_{1} A\right)^{\mathrm{n}} / \mathcal{M}_{h}\right\}_{\mathrm{f}}{ }^{\mathrm{n}}\left\{\mathrm{CE}_{\mathrm{gI}} / \mathrm{f}\right\}^{(2-\mathrm{n})_{f}} \tag{6.5}
\end{align*}
$$

It can be seen from appendix II that the factor C for the idealized line to neutral voltage waveform of the invertor output is 1.048 and that K_{f} is 1.06 . In section 5.1.1 Steinmetz exponent n has been shown to be 1.674.

Since the leakage impedance of the stator is very small compared to the magnetizing impedance (Figure 4.1), it may be assumed that the wave-form of the induced stator voltage is almost the same as that impressed on it. A further assumption will be made at this stage that the output voltage of the inventor has always the waveform of the idealized voltage. With these assumptions the hysteresis loss when the motor is fed from the invertor is

$$
\begin{gather*}
W_{h(I N V)}=\left\{\eta_{h} /\left(4 N_{1} K_{1} A\right)^{1.674}\right\}(1.048 / 1.06)^{1.674} \\
\left(\mathrm{E}_{\mathrm{g} 1} / f\right)^{1.674_{f}} \tag{6.6}
\end{gather*}
$$

Now hysteresis loss under sinusoidal supply is, from equation 5.9 ,

$$
\begin{gather*}
W_{h(\sim)}=\left\{\prod_{h} /\left(4 N_{1} K w_{1} A\right)^{1.674}\right\}(1 / 1.11)^{1.674} \\
\left(E_{g \mathrm{I}} / \mathrm{f}\right)^{1.674_{\mathrm{f}}} \tag{6.7}
\end{gather*}
$$

Dividing equation 6.6 by equation 6.7 gives

$$
\begin{align*}
W_{h(\text { INV })} / W_{h(\sim)}= & (1.11 \times 1.048 / 1.06)^{1.674} \\
& \left\{\frac{E_{g I} / f}{\sum_{\mathrm{gf}} / \mathrm{f}}\right\}^{1.674} \tag{6.8}
\end{align*}
$$

When an induction motor is running from a nonsinusoidal supply "constant maximum torque" operation demands that the ratio of the fundamental component of the air-gap voltage to the operating frequency should remain constant. Therefore $E_{g l} / f=E_{g f} /$. Hence

$$
W_{h(I N V)} / W_{h(\sim)}=(1.11 \times 1.048 / 1.06)^{1.674}=1.191
$$

It could, therefore, be concluded that for 'constant maximum torque" operation, supply from the thyristor invertor causes hysteresis loss to increase by 19.1% over similar operation from ${ }_{\wedge}^{a}$ sinusoidal source.

In order to determine the hysteresis loss simulating resistance for invertor operation R_{h} (INV) the following procedure is adopted. It will be assumed that the value of this resistance under 50 Hertz sinusoidal operation $\mathrm{R}_{\mathrm{h} 50(\sim)}$ is known. From equation 5.7

$$
\begin{align*}
& R_{h 50(\sim)}=\left\{\left(4 N_{1} K_{w_{1}} A\right)^{1.674} / \boldsymbol{n}_{h}\right\}(1.11)^{1.674} \\
&\left(E_{\left.g 50(\sim)^{\prime} 50\right)^{0.326} \times 50}\right. \tag{6.9}
\end{align*}
$$

R_{h} (INV) for invertor operation is, from equation 6.5,

$$
\mathrm{R}_{\mathrm{h}}(\text { INV })=\left\{\left(4 \mathbb{N}_{1} \mathrm{Kw}_{1} A\right)^{1.674} / \boldsymbol{n}_{\mathrm{h}}\right\}(1.06)^{1.674}
$$

$$
\begin{equation*}
(1.048)^{1.674}\left(\mathrm{E}_{\mathrm{gI}} / \mathrm{f}\right)^{0.326_{f}} \tag{6.10}
\end{equation*}
$$

Therefore

$$
\begin{align*}
R_{h(I N V)} / R_{h 50(\sim)}= & (1.06 / 1.11)^{1.674}(1.048)^{0.326} \\
& \left(\frac{E_{g I} / \pm}{\left.E_{g 50(\sim}\right)^{/ 50}}\right) \\
= & 0.954(\mathrm{f} / 50) \tag{6.11}
\end{align*}
$$

since $\left(E_{g 1} / f=E_{g 50(\sim)} / 50\right)$

$$
R_{h} \text { (INV) at } 50 \text { Hertz will be taken as } 95.4 \% \text { of its }
$$ equivalent value at 50 Hertz sinusoidal operation (Equation 6.11). Under sinusoidal 50 Hertz operation with $\mathrm{E}_{g f} / \mathrm{f}$ ratio of $2 \mathrm{Volt} / \mathrm{Hertz}$, the value of $\mathrm{R}_{\mathrm{h} 50}(\boldsymbol{\sim})=46 \Omega$ $R_{h(\text { INV) }}$ at $50 \mathrm{~Hz}_{6}$ should be $46 \times 0.954=43.8 \Omega$. 6.1.2 Eddy current loss

From equation 5.16 it can be seen that for a given machine the resistance simulating the eddy current loss is
independent of frequency and wave-form of line to neutral voltage induced in the stator winding.

From equation 5.17 eddy current losses do not depend on the waveform of the stator induced line to neutral voltage. Rewriting equation 5.17 for a nonsinus oidal waveform gives

$$
\begin{equation*}
\left.W_{\mathrm{e}}(\text { non } \sim)=P_{e} \delta^{2} E_{g(\text { non } \sim}^{2}\right) /\left\{16\left(\mathbb{N}_{1} \mathrm{Kw}_{1} A\right)^{2}\right\} \tag{6.12}
\end{equation*}
$$

Replacing the r.m.s. value of the non-sinusoidal
air-gap voltage $E_{5(n o n \sim)}$) in terms of the romes. value of the time fundamental $E_{g l}$ gives

$$
\begin{equation*}
\left.W_{e(n o n} \sim\right)=P_{\mathrm{e}} \delta^{2} \mathrm{C}^{2} \mathrm{E}_{\mathrm{g}}{ }^{2} /\left\{16\left(\mathrm{~N}_{1} \mathrm{~K} w_{1} A\right)^{2}\right\} \tag{6.13}
\end{equation*}
$$

The eddy current loss at 50 Hertz sinusoidal operation is given by

$$
W_{050(\sim)}=P_{e} \delta^{2} E_{550(\sim)}^{2} /\left\{16\left(N_{1} K_{1} A\right)^{2}\right\}
$$

(Equation 5.17)

$$
\begin{align*}
\left.\therefore \quad W_{e(\text { non }}\right) / W_{e 50(\sim)} & =C^{2}\left(E_{g I} / E_{g 50(\sim)}\right)^{2} \\
& =C^{2}\left(\frac{E_{g I} / f}{E_{g 50(\sim)} / 50}\right)^{2}\left(f^{2} / 50^{2}\right) \tag{6.14}
\end{align*}
$$

Hence, at "constant maximum torque" we get

$$
\begin{equation*}
\left.W_{e(\text { non } \sim}\right) / W_{e 50(\sim)}=0^{2} f^{2} / 50^{2} \tag{6.15}
\end{equation*}
$$

For invertor operation $C=1.048$ for the idealized output voltage of the invertor, and hence the ratio of eddy current loss under invertor operation to similar operation under sinusoidal condition is given by

$$
W_{e 50(I N V)} / W_{e 50(\sim)}=(1.048)^{2}=1.099
$$

The invertor operation causes 9.9% increase in eddy current loss.

Since in section 5.1.2 it has been shown that in the particular machine:usied the eddy current \ddagger oss under sinusoidal operation is negligibly small, and henve the total loss is simulated by that in R_{h}, no attempt is made to determine the resistance simulating the eddy current loss unuer invertor operation.

6.2. Effect of Stator Connection on Iron Losses

Ontil now it has been assumed that the stator windings are star connected and the iron losses are: calculated on the basis of line to neutral voltage. With sinusoidal excitation the line to line and line to neutral voltage wave-forms are sinusoidal and connection of stator. windings (star or deltä), do not make any difference in loss calculation. On the nuntrary, the line to line and
the line to neutral voltage wave-form of the invertor output are very different producing in general a completely different value for the form factor K_{f} and the constant C which relates the r.m.s. value of the non-sinusoidal waveform to the rom.s. value of the time fundamental. If the machine was delta-connected it seems logical to base the iron loss computation on the line to line voltage waveform. From appendix II for line to line voltage wave-form, $K_{f}=(1.5)^{\frac{1}{2}}$ and C remains unchanged at $\pi / 3$. From equation 6.8 , basing calculations on line to line voltage wave-form for a delta-connected machine results in

$$
\begin{aligned}
W_{h(I N V)} / W_{h(\sim)} & =1.11 \times 1.048 /(1.5)^{\frac{1}{2}} 1.674 \\
& =0.9095
\end{aligned}
$$

which implies that a delta-connected machine under invertor operation results in about 9% less hysteresis loss compared to equivalent sinusoidal operation.

Since C is the same for line to line and line to neutral voltage wave-forms, it can be seen from equation 6.15 that there is no apparent change in eddy current loss due to delta connection of the stator winding.

Measurements (Figure 8.51) indicate that in practice the above statements regarding hysteresis and eddy current loss are not true. The anomalies occurring are
due to the fact that when calculations are based on line to tc line voltage wave-form, the reference axes which are automatically chosen thereby are non-existont as far as the machinc magnetic circuit is concerned. The concept of reference axes is dealt with in chapter 7 .

The difference not only arises when the machinc magnetic circuit is connected in star or in delta, but also when series or parallel connections are made in machines with assymetric magnetic circuit ${ }^{19}$.

6.3 Variable Frequency Equivalent Cjrcuit Representing the Contribution of Arbitrary Time Harmonics on Motor Performance taking into account the space Fundamental H.N.F. only

The effect of $\gamma^{\text {th }}$ time harmonic of the fundamental variable frequency f on the performance of an induction motor can be determined as follows. Referring to figure 5.2, the stator of the induction motor is at a frequency of γf Hertz considering the $\boldsymbol{\gamma}^{\text {th }}$ time harmonic only. Since the input of the "frequency translation device 1 " is at the normal frequency f_{n}, the net frequency translated by this hypothetical device is reduced by the factor $\propto \boldsymbol{\chi}$. The process of reasoning which led to the development of figure 5.3 from figure 5.2 can now be applied for this case. If the r.m.s. value of the $\gamma^{\text {th }}$ time harmonic roltage is
$V_{f \gamma}$ then the analogue input should be $V_{f \gamma} /(\rho \gamma)$ Volt. The stator resistance would then be $\mathrm{R}_{1}(\gamma \infty)$ whereas the rotor resistance would be $R_{2}\left(S_{\gamma} \times \gamma\right.$) (S_{γ} is the slip for the rotor for the $\gamma^{\text {th }}$ time harmonic). All other parameters would be unchanged. This analogue taking into account the $\gamma^{\text {th }}$ time harmonic is shown in figure 6.1. Since there is a hypothetical frequency translation factor of $\alpha \gamma$, the analogue voltage, impedance and power as viewed from the stator side should be multiplied by $\alpha \gamma$ to derive the actual valucs. Currents and power-factor remain unchanged. This treatment demands that the leakage reactances for a particular value of stator and rotor current be directly proportional to the harmonic frequency considered. For a particular value of air-gap flux density the magnetizing reactance should also be directly proportional to the harmonic frequency. In performing experiments it was found that time harmonic voltages higher than $19^{\text {th }}$ were very small and as such all harmonic voltages of orders higher than $19^{\text {th }}$ were neglected.

At a fundamental frequency of 50 Hertz (top frequency of test) the $19^{\text {th }}$ harmonic has a frequency of 950 Hertz. It is doubtiul whether the parameters X_{1}, X_{2} and $X_{\text {II }}$ vary linearly with frequency up to 950 Hertz. Determination of these parameters involves no-load and

Figure 6.1 Variable Frequency Simple Equivalent Circuit Of Induction Motor For Arbitrary Time Harmonics Under Non-Sinusoidal Excitation.
locked rotor tests and no attempt was made to conduct these tests at such high frequencics. The value of actual core loss simulating resistance R_{Mf} (non~) at a fundamental frequency f, however, unaffected by the time harmonics because it is determined from equation 6.11 which already takes into account the contribution to iron loss by the time harmonics. The iron loss in terms of actual air-gap line to neutral r.m.s. voltage $E_{g f(n o n \sim)}$ at fundamental frequency f, is

$$
\begin{equation*}
W_{h f}(\text { non } \sim)=E_{\operatorname{gf}(\text { non } \sim)}^{2} / R_{M f(\text { non } \sim)} \tag{6.16}
\end{equation*}
$$

In terms of the rom.s. value of $\gamma^{\text {th }}$ time harmonic air-gap line to neutral voltages E_{gf} of fundamental frequency f, the iron loss is

$$
\begin{equation*}
W_{h f}(\text { non } \sim)=\sum_{\gamma=1}^{\infty}\left\{E_{g f \gamma}{ }^{2} / R_{M f(\text { non } \sim)}\right\} \tag{6.17}
\end{equation*}
$$

Since the actual iron loss is $\alpha \gamma$ times the analogue iron loss, and also the actual voltage is α times the analogue voltage, then for the $\gamma^{\text {th }}$ time harmonic

$$
\propto \gamma \frac{\binom{\gamma^{\text {th }} \text { time harmonic analogue }}{\text { air-gap line to noutral voltage }}^{2}}{\begin{array}{r}
\text { th time harmonic analogue } \\
\text { core loss simulating resistanco }
\end{array}}
$$

$$
\begin{aligned}
= & \text { Actual contribution to core loss by } \\
& \gamma^{\text {th }} \text { timc harmonic az-gap line to }
\end{aligned}
$$

to neutral voltage.
or

$$
\begin{equation*}
\left.\alpha \gamma^{\left\{\frac{E_{g f} \gamma}{} /(\alpha \gamma)\right\}^{2}}{R_{M \gamma}}_{R_{M}}=E_{g f}^{2} \gamma / R_{M f(\text { non }}\right) \tag{6.18}
\end{equation*}
$$

where $\mathbb{R}_{\text {M }}$ is the analogue iron loss simulating resistance for $\gamma^{\text {th }}$ time harmonic.

Therefore

$$
\alpha \gamma R_{M \gamma}=R_{M f(\text { non } \sim)}
$$

or

$$
R_{M \gamma}=R_{M P(\text { non } \sim} /(\boldsymbol{\alpha \gamma})=R_{M(\text { non } \sim)} / \gamma(6.19)
$$

where $R_{\text {M(non }}$) is the analogue iron loss simulating resistance at normal frequency and non-sinusoidal excitation. For invertor operation at normal frequency $R_{M(n o n \sim)}$ is denoted by $\dot{R}_{\operatorname{Mi}(\mathbb{N})}$ and is given by equation 6.11. It must be emphasized at this point that all the iron loss is wholly due to hysteresis and has no contribution from eddy currents as vas shown in section 5.1.2.

6.4 $\frac{\text { Performance Calculation for }}{\gamma \text { th Time Harmonic and Space }}$ Fundamental Mo M.F.

Referring to the passive circuit analogue of figure 6.1:-
The analogue stator impedance $Z_{1 \gamma}=R_{1} /(\alpha \gamma)+j X_{1}$
(Equation 6.21 is give on in table 6.2)

The analogue rotor impedance

$$
\begin{equation*}
Z_{2}=R_{2} /\left(S_{\gamma} \alpha \gamma\right)+j X_{2} \tag{6.22}
\end{equation*}
$$

(Equation 6.23 is given in table 6.2)

The slip of the rotor with respect to the space fundamental m.m.f. produced by the $\gamma^{\text {th }}$ time harmonic is

$$
\begin{equation*}
S_{\gamma}=1-(1-S) / \gamma \tag{6.24}
\end{equation*}
$$

where S is the slip of the rotor with respect to the space fundamental mom.f. produced by the time fundamental of the inverter supply.

The analogue admittance of the magnetizing branch

$$
\begin{equation*}
Y_{\mathbb{M} \gamma}=\gamma / R_{\mathbb{M}(I N V)}-j 1 / X_{M} \tag{6.25}
\end{equation*}
$$

(Equation 6.26 is given in table 6.2)
If the romes. value of $\gamma^{\text {th }}$ time harmonic (fundamental frequency f Hertz) of inventor supply to the machine is $V_{f r}$, then when referred to the analogue (figure 6.2) it is

$$
\begin{aligned}
V_{f \gamma} /(\alpha \gamma) & =E_{g \gamma}+I_{I \gamma} Z_{I \gamma} \\
& =E_{g \gamma}\left(Z_{I \gamma}+Z_{2 \gamma}+Z_{I \gamma} Z_{2 \gamma} Y_{M \gamma}\right) / Z_{2 \gamma}
\end{aligned}
$$

The $\gamma^{\text {th }}$ time harmonic romes. value of air-gap line to neutral analogue voltage is

$$
\begin{gather*}
E_{g \gamma}=\left\{V_{f \gamma} /(\alpha \gamma)\right\}\left\{z_{2 \gamma} /\left(z_{I \gamma}+z_{2 \gamma}\right.\right. \\
\left.+Z_{I \gamma} Z_{2 \gamma} Y_{M \gamma}\right) \tag{6.27}
\end{gather*}
$$

The rest of the performance equations are given in table 6.2.

The electromagnetic torque developed by the $\gamma^{\text {th }}$ time harmonic is given by equation 6.44 as

$$
\begin{aligned}
{ }^{T} \gamma=\{33,000 /(2 \pi 746)\}\left(m_{2} / N_{n s}\right) & I_{2} \gamma^{2} R_{2} /\left(S_{\gamma} \propto \gamma\right) \\
& \text { (Equation } 6.44)
\end{aligned}
$$

$I_{2 \gamma}$ is given by equation 6.29 and is

$$
\begin{aligned}
I_{2 \gamma} & =\frac{V_{f \gamma}}{\alpha \gamma} \frac{1}{Z_{1 \gamma}{ }^{+Z} 2 \gamma{ }^{+}{ }^{Z}} 1 \gamma{ }^{Z} \gamma_{2 \gamma} Y_{M \gamma} \\
& =\frac{V_{f \gamma}}{\alpha \gamma} /\left\{\left(\frac{R_{1}}{\alpha \gamma}+j X_{1}\right)+\left(\frac{R_{2}}{S_{\gamma} \alpha}+j X_{2}\right)\right.
\end{aligned}
$$

$$
+\left(\frac{R_{1}}{\alpha \gamma}+j X_{1}\right)\left(\frac{R_{2}}{S_{\gamma} \alpha \gamma}+j X_{2}\right)
$$

$$
\left.\left(\frac{\gamma}{R_{M I}(I N V)}-j \frac{I}{\mathrm{X}_{M}}\right)\right\}
$$

$$
=\frac{V_{f}}{\alpha \gamma}\left[\left\{\left(\frac{R_{I}}{\alpha \gamma}+\frac{R_{2}}{S_{\gamma} \alpha \gamma}\right)+\frac{\gamma}{R_{M(I N V)}}\right.\right.
$$

$$
\begin{align*}
\times & \left.\left(\frac{R_{1} R_{2}}{S_{\gamma} \alpha^{2} \gamma^{2}}-X_{1} X_{2}\right)+\frac{1}{X_{M}}\left(\frac{R_{1} X_{2}}{\alpha \gamma}+\frac{R_{2} X_{1}}{S_{\gamma} \alpha \gamma}\right)\right\} \\
& +j\left\{\left(X_{1}+X_{2}\right)+\frac{\gamma}{R_{M}(\text { INV })}\left(\frac{R_{1} X_{2}}{\alpha \gamma}+\frac{R_{2} X_{1}}{S_{\gamma} \alpha \gamma}\right)\right. \\
& \left.\left.-\frac{1}{X_{M}}\left(\frac{R_{1} R_{2}}{S_{\gamma} \alpha^{2} \gamma^{2}}-X_{1} X_{2}\right)\right\}\right] \tag{6.49}
\end{align*}
$$

The scalar value of $I_{2 \gamma}$ is

$$
\begin{equation*}
\left|I_{2 \gamma}\right|=\left\{V_{f \gamma}(\alpha \gamma)\right\} /(D)^{\frac{1}{2}} \tag{6.63}
\end{equation*}
$$

where

$$
\begin{align*}
D= & {\left[\left\{\left(\frac{R_{1}}{\alpha \gamma}+\frac{R_{2}}{S_{\gamma} \alpha \gamma}\right)+\frac{\gamma}{R_{M}(I N V)}\left(\frac{R_{1} R_{2}}{S_{\gamma} \alpha^{2} \gamma^{2}}\right.\right.\right.} \\
& \left.\left.-X_{1} X_{2}\right)+\frac{1}{X_{M}}\left(\frac{R_{1} X_{2}}{\alpha \gamma}+\frac{R_{2} X_{1}}{S_{\gamma} \alpha \gamma}\right)\right\}^{2} \\
& +\left\{\left(X_{1}+X_{2}\right)+\frac{\gamma}{R_{M}(I N V)}\left(\frac{R_{1} X_{2}}{\alpha \gamma}+\frac{R_{2} X_{1}}{\alpha S_{\gamma}}\right)\right. \\
& \left.\left.-\frac{1}{X_{M}}\left(\frac{R_{1} R_{2}}{S_{\gamma} \alpha^{2} \gamma^{2}}-X_{1} X_{2}\right)\right\}^{2}\right] \tag{6.54}
\end{align*}
$$

The electro-magnetic torque can now be determined by substituting equation 6.63 in equation 6.44

$$
I=\{33,000 /(2 \pi 746)\}\left(m_{2} / N_{n s}\right)\left\{v_{f}{ }_{\gamma}^{2} R_{2} /\left(s_{\gamma} \alpha^{3} \gamma^{3}\right)\right\} / D
$$

where D is given by equation 6.64 .

The terms containing $\mathrm{R}_{\mathbb{M}(I N V)}$ and X_{M} may be neglected as they are small compared to the others (implying infinite magnetizing impedance), then

$$
\begin{aligned}
{ }^{T} \gamma= & \frac{33,000}{2 \pi 746} \frac{m_{2}}{N_{n s}}-\frac{V_{f}^{2} R_{2}\left(S_{\gamma} \alpha^{3} \gamma^{3}\right)}{\left(\frac{R_{1}}{\alpha \gamma}+\frac{R_{2}}{R_{\gamma} \alpha \gamma}\right)^{2}+\left(X_{1}+X_{2}\right)^{2}} \\
= & \frac{33,000}{2 \pi 746} \frac{m_{2}}{N_{n s}} \frac{\left.V_{f}^{2} \gamma_{2} R_{2} \delta^{3} \alpha^{3} \gamma^{3}\right)}{\left(\frac{R_{2}}{S_{\gamma \alpha \gamma}}\right)^{2}\left\{\left(1+S_{\gamma} \frac{R_{1}}{R_{2}}\right)^{2}\right.} \\
& \left.+\left(\frac{X_{1}+x_{2}}{R_{2}} \times S_{\gamma} \alpha \gamma\right)^{2}\right\}
\end{aligned}
$$

Substituting

$$
\mathrm{K}_{1}=\mathrm{R}_{1} / \mathrm{R}_{2}
$$

and

$$
\begin{aligned}
\mathrm{K}_{2}= & \left\{\mathrm{X}_{1}+\mathrm{X}_{2} / \mathrm{R}_{2}\right. \\
\mathrm{T}_{\gamma}= & \{33,000 /(2 \pi 746)\}\left(\mathrm{m}_{2} / \mathrm{N}_{\mathrm{ns}}\right)\left\{\mathrm{v}_{\mathrm{f}}^{2} \gamma \gamma /\left(\mathrm{R}_{2} \alpha \gamma\right)\right\} \\
& 1 /\left\{\left(1+\mathrm{S}_{\gamma} \mathrm{K}_{1}\right)^{2}+\left(\mathrm{K}_{2} S_{\gamma} \alpha \gamma\right)^{2}\right\}
\end{aligned}
$$

(6.65)

For high values of time harmonics $\left(5^{\text {th }}, 7^{\text {th }}, 11^{\text {th }}, 13^{\text {th }}\right.$, etc. $)$

$$
\begin{align*}
& S_{\gamma \rightarrow \infty}=1-[1 / \gamma](1-S) \\
& \rightarrow 1 \\
& \therefore \operatorname{Tin}_{\gamma \rightarrow \infty}=\{33,000 /(2 \pi 746)\}\left(m_{2} / N_{n s}\right)\left(\mathrm{V}_{\mathrm{f} \gamma}^{2} / R_{2}\right) \\
&\left\{1 /\left(\mathrm{K}_{2}^{2} \alpha^{3} \gamma^{3}\right)\right\} \tag{6.66}
\end{align*}
$$

(Equation 6.22)

From the above discussion it may be concluded that the higher time harmonics reacting with the space fundamental air-gap flux produce a small torque which is independent of slip S and is inversely proportional to the cube of the order of the time harmonics. This could be either a motoring or braking torque depending on the phase sequence of the time harmonics.

6.5 Equivalent Circuit Representing the Contribution of Time Harmonics on Motor Performance taking into account the Fundamental and Higher Space Harmonics

In order to take into account space harmonics, the equivalent circuit of figure 6.1 has to be expanded to that shown in figure 6.2. It may be noted that figure 6.2 is identical to figure 6.1 except for the addition of the $X_{M \nu}$ and $Z_{2 \nu}$ representing the space harmonics in the airgap of the machine.
6.6 Performance Calculations taking into account the Time rundamental and Time Harmonics of Supply, and Space Fundamental and Space Harmonics of Machine Air-Gap M.M.F. Referring to figure 6.2:The analogue rotor $\nu^{\text {th }}$ space hormonic to $\gamma^{\text {th }}$ time harmonic is

$$
\begin{equation*}
Z_{2 \gamma \nu}=R_{2 \nu} / S_{\nu \gamma}+j X_{2 \nu} \tag{6.67}
\end{equation*}
$$

Figure 6.2 Variable Frequency Equivalent Circuit Of An Induction Motor For Arbitrary Time Harmonics Under Non-Sinusoidal Excitation Taking Space Fundamental And Space Harmonics In Account.
(Equation 6.68 is given in table 6.3)
The analogue impedance of the $\nu^{\text {th }}$ space harmonic link to $\gamma^{\text {th }}$ time harmonic is

$$
\begin{array}{r}
\mathrm{Z}_{A \gamma \nu}=\left\{-\mathrm{X}_{\mathrm{M} \mathrm{\nu}} \bar{X}_{2 \nu}+j \mathrm{X}_{\mathrm{M} \mathrm{\nu}} \mathrm{R}_{2 \nu} /\left(s_{\gamma \nu} \alpha \gamma\right)\right\} /\left\{\mathrm{R}_{2 \nu}\right) \\
\left(\mathrm{s} \gamma \nu(\gamma \gamma)+j\left(\mathrm{X}_{M \nu}+\mathrm{X}_{2 \nu}\right)\right\} \tag{6.69}
\end{array}
$$

(Equation 6.70 is given in table 6.3)

Total analogue impedance of the space harmonic chain to $\gamma^{\text {th }}$ time harmonic is

$$
\begin{equation*}
Z_{A \gamma}=\sum_{\nu} A \gamma \nu \tag{6.71}
\end{equation*}
$$

(Equation 6.72 is given in table 6.3)
Analogue impedance including the core loss resistance to

$$
\gamma^{\text {th }} \text { time harmonic is }
$$

$$
\left.Z_{B \gamma}=\left\{R_{M(I N V}\right)_{A \gamma} / \gamma\right\} /\left\{R_{M(I N V)} / \gamma+Z_{A \gamma}\right\}(6.73)
$$

(Equation 6.74 is given in table 6.3)
Input impedance of the analogue to $\gamma^{\text {th }}$ time harmonic is

$$
\begin{equation*}
Z_{D \gamma}=\left\{R_{1} /(\alpha \gamma)+j X_{1}\right\}+z_{B \gamma} \tag{6.75}
\end{equation*}
$$

(Equation 6.76 is given in table 6.3)

Slip of the rotor to $2^{\text {th }}$ space harmonic produced by $\gamma^{\text {th }}$ time harmonic is

$$
\begin{equation*}
s_{x} x=1-y(1-s) / \gamma \tag{6.77}
\end{equation*}
$$

The various other performance equations are given in table 6.3. A digital programme was written for an IBM 7090 computer to take into account up to $37^{\text {th }}$ space and $19^{\text {th }}$ time harmonic and was used to predict the performance of the induction motor when supplied by the thyristor invertor.

Iterns	Analogue	Actual
```\mp@subsup{\gamma}{}{\mathrm{ th }}\mathrm{ time} harmonic rotor current I I ```	$\begin{array}{r} \frac{V_{f \gamma}}{\alpha \gamma} \frac{1}{Z_{1 \gamma}+Z_{2 \gamma}+Z_{1 \gamma}} \frac{}{Z_{2 \gamma} \bar{Y}_{M \gamma}} \\ -(6.29) \end{array}$	$\begin{aligned} \frac{V_{\rho \gamma}}{\alpha \gamma} & \frac{1}{{ }^{2}} 1 \gamma{ }^{+2} 2 \gamma^{+{ }^{2}} 1 \gamma{ }^{2} 2 \gamma Y_{M \gamma} \\ & -(6.29) \end{aligned}$
$\gamma^{\text {th }}$ time harmonic magnetizing current $I_{M \gamma}$	$\begin{array}{r} \frac{V_{f \gamma}}{\alpha \gamma} \frac{Z_{2 \gamma} Y_{M} \gamma}{Z_{1 \gamma}+Z_{2 \gamma} \gamma^{+Z_{1 \gamma}}{ }^{Z}{ }_{2 \gamma} Y_{M \gamma}} \\ -(6.30) \end{array}$	$\begin{array}{r} \frac{V_{\rho \gamma}}{0 . \gamma} \frac{Z_{2 \gamma} \gamma_{M \gamma}}{Z_{1 \gamma}{ }^{2} 2 \gamma^{+Z}{ }^{2} \sigma^{2} 2 \gamma{ }^{Y_{M \gamma}}} \\ -(6.30) \end{array}$
$\gamma^{t}$   time harmonic stator current $I_{\text {I }}$	$\mathrm{I}_{2 \gamma}+\mathrm{I}_{\mathrm{M} \mathrm{\gamma}}{ }^{-(6.31)}$	$\begin{aligned} I_{2 \gamma}+I_{\text {Wi }} & \\ & -(6.31) \end{aligned}$
```\gamma th time harmonic rotor power input F```	$\begin{aligned} m_{2} I_{2 \gamma}^{2} R_{2} /(S \gamma \gamma \gamma) & \\ & -(6.32) \end{aligned}$	$\begin{aligned} m_{2} I_{2 \gamma}{ }^{2} R_{2} /\left(S_{\gamma}\right) & \\ & -(5.33) \end{aligned}$
```\gamma th time harmonic rotor copper loss Pcu2r```	$\begin{aligned} m_{2} I_{2 \gamma}^{2} R_{2} /(\alpha \gamma) & \\ & -(6.34) \end{aligned}$	$m_{2} I_{2} \gamma^{2} R_{2}$   - (6.35)
```\gamma th time harmonic rotor power output P```	$\begin{aligned} & m_{2} I_{2}{ }^{2}\left\{R_{2} /(s \gamma \propto \gamma\}(I-s)\right. \\ &-(6.36) \end{aligned}$	$\begin{aligned} m_{2} I_{2} \gamma^{2}\left\{R_{2} /(s \gamma)\right\}(1- & -s \gamma) \\ & -(6.37) \end{aligned}$
$\begin{aligned} & \gamma_{\text {harmonic iron }}^{\text {time }} \\ & \text { loss } P_{\text {RE }} \end{aligned}$	$\begin{array}{r} m_{1}{ }^{ \pm}{ }_{g \gamma}^{2} \gamma /\left(\mathrm{R}_{M(\text { INV })}\right) \\ -(6.38) \end{array}$	$m_{1} \alpha \gamma^{2} E_{g \gamma}{ }^{2} / R_{\mathbb{I L I V V})}$
```\mp@subsup{\gamma}{}{\mathrm{ th time}} harmonic stator copper loss Pcul%```	$\begin{aligned} m_{1} I_{1}{ }^{2} R_{I} \prime(\alpha \gamma) & \\ & -(6.40) \end{aligned}$	$\mathrm{m}_{1} I_{1} \chi^{2} \mathrm{R}_{1} \underline{ } \begin{aligned} & \\ & \\ & \\ & \\ & \end{aligned}$


Items	Anclogue	Actual
```\gamma try time harmonic Volt-anapere input VA.} ror}\mathrm{ time harmonic electro- magnetic torque Tr Eb.--st.```		
R.in.s. value of air-gap line to neutral voltage $\mathrm{E}_{\mathrm{g}}(\mathrm{non} \sim)$	$\left\{\sum_{\gamma} E_{g \gamma}\right\}^{\frac{1}{2}}$	$\begin{equation*} \left\{\left(\alpha \gamma \mathrm{E}_{g \gamma}\right)^{2}\right\}_{-(6.46)}^{\frac{1}{2}} \tag{6.45} \end{equation*}$
R.m.s. value of rotor current I_{2}	$\left\{\sum_{\gamma} I_{2 \gamma}^{2}\right\}_{(6.47)}^{\frac{1}{2}}$	$\left.\left\{\sum I_{2 r}\right\}^{2}\right\}^{\frac{1}{2}}$ - (6.47)
R.m.s. value of magnetizing current $I_{\text {ili }}$	$\left\{\sum_{\gamma} I_{i n}{ }^{2} \gamma\right\}^{\frac{1}{2}}-(6.48)$	$\left\{\sum_{\gamma} I_{M}{ }^{2}\right\}^{\frac{1}{2}}$
R.m.s. value of stator current I_{1}	$\left\{\sum_{\gamma} I_{\gamma}^{2}\right\}^{\frac{1}{2}}-(6.49)$	$\left\{\sum_{\gamma} I_{\gamma}{ }_{\gamma}^{2}\right\}^{\frac{1}{2}}$ - (6.49)
Thett rotor power input $\mathrm{P}_{2 \text { in }}$	$\begin{equation*} \sum_{\gamma} P_{2 \gamma \text { in }}-(6.50) \tag{6.51} \end{equation*}$	$\sum_{\gamma} \alpha \gamma \mathrm{P}_{2 \gamma \text { in }}$
Nett rotor copper loss $P_{\text {cu2 }}$	$\sum_{\gamma} P_{\text {cu2 } \gamma}-(6.52)$	$\sum_{\gamma} \alpha \gamma p_{\operatorname{cu2} \gamma}-(6.53)$
Nett rotor power output P_{20}	$\sum_{\gamma} P_{20 \gamma}-(6.54)$	$\sum_{\gamma}^{\infty} \alpha \gamma E_{2 o \gamma}-(6.55)$

Items	Analogue		Actual
Nett iron loss $P_{F E}$	$\sum_{\gamma} P_{F} \gamma$	- (6.56)	$\sum_{\gamma}^{\alpha \gamma} \mathcal{P E D}^{\gamma}-(6.57)$
Nett stator copper loss $\mathrm{P}_{\mathrm{cul}}$	$\sum_{\gamma} P_{\text {cul }} \gamma$	$\begin{equation*} -(6.59) \tag{6.59} \end{equation*}$	$\sum_{\frac{\alpha}{\gamma}}{ }^{P} \operatorname{cul\gamma }$
Nett Volt-ampere input VA	$\sum_{\gamma} W A \gamma$	$\begin{equation*} -(6.60) \tag{6.61} \end{equation*}$	$\sum_{\gamma} \alpha \gamma V A \gamma$
Nett electromagnetic torque T	$\sum_{\gamma} T$	$-(6.62)$	$\sum_{\gamma} T_{\gamma}$.- (6.62)

Items	Analogue	Actual
Slip of the rotor to $\nu^{\text {th }}$ space harmonic produced by $\gamma^{\text {th }}$ time harmonic $S_{\gamma} y$ $\gamma^{\text {th }}$ time harmonic current of stator $I_{\text {I }}$ $\gamma^{\text {th }}$ time harmonic airgap voltage r.ill.s. Egy $\gamma^{\text {th }}$ time harmonic current through space harmonic chain $I_{A \gamma}$ Rotor $\nu^{\text {th }}$ space harmonic current due to $\gamma^{\text {th }}$ time hermonic $I_{2 \gamma \nu}$ $\boldsymbol{\nu}^{\text {th }}$ space harmonic rotor power input due to $\gamma^{\text {th }}$ time harmonic $P_{2 i n \gamma \nu}$ Nettrotor power input due to $\gamma^{\text {th }}$ time harmonic $P_{2 i n} \gamma$		

Items	Analogue	Actual
Gross rotor power input $\mathrm{P}_{2 \text { in }}$ $\nu^{\text {th }}$ harmonic rotor copper loss due to γ th time harmonic $\mathrm{P}_{\text {cu2 }} \times 2$ Nettrotor copper loss due to $\gamma^{\text {th }}$ time harmonic $P_{\text {cu2 }}$ Gross rotor copper loss $P_{\text {cu }}$ $\nu^{\text {th }}$ harmonic rotor power output due to $\gamma^{\text {th }}$ time harmonic $\mathrm{P}_{20 \gamma} \mathrm{\nu}$ Wett rotor power output due to $\gamma^{\text {th }}$ time harmonic $P_{20 \gamma}$: Gross rotor power output P_{20} Iron loss due to $\gamma^{\text {th }}$ time harmonic PFE γ	- (6.101)	

Items	Analogue	lictual
Gross iron loss P_{FE}	$\sum_{\gamma}\left(\gamma_{g \gamma}^{2}\right) / R_{\text {MA }}(\operatorname{TNV})$	$\sum_{\gamma}\left(\alpha \gamma^{2} \mathrm{E}_{\mathrm{g}}{ }^{2} \gamma^{\prime} / \mathrm{R}_{\mathrm{ID}(\mathrm{INV})}-(6.104)\right.$
Stator copper loss due to $\gamma^{\text {th }}$ time harmonic $P_{\text {culy }}$	$\begin{aligned} I_{I \gamma}^{2} & R_{I} /(\propto \gamma) \\ & -(6.1 .05) \end{aligned}$	$\begin{aligned} I_{I \sigma} & \\ & -(6.106) \end{aligned}$
Gross stator copper loss $\mathrm{F}_{\mathrm{cuI}}$	$\begin{aligned} \sum_{\gamma} I_{1}{ }^{2} \gamma R_{1} /(\alpha \gamma) \\ -(6.107) \end{aligned}$	$\sum_{\gamma} I_{I \gamma}^{2} R_{I}$ - (6.108)
R.in.s. value of stator current	$\left(\sum_{\gamma} I_{1}{ }_{\gamma}^{2}\right)^{\frac{1}{2}}$	$\begin{equation*} \left(\sum_{\gamma} I_{I \gamma}^{2}\right)^{\frac{1}{2}}-(6.109) \tag{6.109} \end{equation*}$
```Stator Volt-ampere input VA```	$\begin{array}{r} \sum_{\gamma \gamma}{ }_{i} \text { conj } \cdot\left(I_{1 \gamma}\right) /(\alpha \gamma) \\ -(6.110 \end{array}$	$\begin{aligned} & \sum_{\gamma} V_{f \gamma} \operatorname{conj} \cdot\left(I_{1 \gamma}\right) \\ &-(6.111) \end{aligned}$
Electro-magnetic torque produced by $\gamma^{\text {th }}$ time and $\nu^{\text {th }}$ space harmonic Tr $\gamma$	$\begin{array}{r} \frac{33,000}{2 \pi 746} \frac{\mathrm{~m}_{2}}{\mathrm{~N}_{\mathrm{ns}}} \nu I_{2 \gamma \nu}^{2} \frac{\mathrm{R}_{2 \nu}}{5 \gamma \nu \alpha \gamma} \\ -(6.112) \end{array}$	$\begin{array}{r} \frac{33,000}{2 \pi 746} \frac{m_{2}}{\mathbb{N}_{n s}} \nu I_{2 \gamma \nu S}^{2} \frac{R_{2 \nu}}{\gamma \nu \alpha \gamma} \\ -(6.112) \end{array}$
Nett electromagnetic torque produced by $\boldsymbol{\gamma}^{\text {th }}$ time harmonic ${ }^{T} \gamma$	$\sum_{\nu}^{T} \gamma \nu \cdot(6.113)$	$\sum_{\nu} T \gamma \nu \quad-(6.113)$
Gross electromagnetic torque developed $T$	$\begin{equation*} \sum_{\gamma} \sum_{\nu}^{T} \delta \nu \tag{6.114} \end{equation*}$	$\sum_{\gamma} \sum_{\nu}^{T} \gamma \nu$

## CHAPTER 7

TIME DOMAIN MWALYSIS OF<br>INVERTOR-FED INDUCTION HOROR

The two methods of analysis are:-
i) Harmonic analysis (Chapter 6)
and ii) Time domain analysis (to be presented in this chapter.

The first method takes into account the extra losses and parasitic torques occurring due to the non-sinusoidal distribution of air-gap m.m.i., by taking large numbers of space harmonics into account. When the motor is fed from a non-sinusoidal source, effects on losses and torques of various time harmonics can also be calculated by taking into account a sufficient number of these time harmonics.

The harmonic analysis cannot directly predict the instantaneous variation of stator line current which is vital for invertor commutation circuit design and determination of the rating of the semi-conductors used in the invertor. Harmonic analysis can only predict the steady mean torque developed and gives no indication of the nature of torque fluctuations of the invertor-fed machine. Analysis directly in the time domain with certain assumptions yields a fairly accurate prediction of instantantous stator line current and torque of the invertorfed machine. It fails, however, in predicting the
parasitic torques and extra losses occurring due to the space harmonics of the air-gap m.m.f.

### 7.1 Assumptions

The analysis of the invertor-fed machine starts with certain basic assumptions, as othervise the mathematics involved becomes too difficult. The assumptions are
i) The two iron surfaces of the air-gap are smooth. This eliminates the slot harmonics of the air-gap mom.f. and also the permeance variation arising due to the relative motion between stator and rotor.
ii) Vindings are sinusoidally distributed over the stator and rotor surfaces. This eliminates the belt harmonics of the air-gap m.m.f.

Assumptions i) and ii) make the mutual inductance between stator and rotor windings to be a purely sinusoidal function of rotor position with respect to the stator windings.
iii) The magnetic circuit of the machine is in an unsaturated condition. This assumption makes it possible to use linear transformation and super-position of voltages, currents, fluxes, impedances, etc.
iv) Main flux path iron loss simulating resistance is assumed to be shunting the supply voltage. This reduces the order of the differential equation involved.
v) The voltage fed to the motor is idealized to a rectangular wave-form. This is the most drastic approximation of all.
vi) The rotor is rotating at a constant angular velocity $w_{r}$.

### 7.2 Representation of Machine and Machine Equations $16,17,18$

With the above assumptions the machine can be represented by a group of linear coupled circuits. By tensor analysis the basic equations of the machine differ depending on the axes of reference. Starting with the physically existing spatially distributed three-phase reference axes on stator and rotor with relative motion between them, two other transformations are now introduced, based on two new hypothetical reference axes, both relatively stationary. This is done in order to simplify the basic machine equations.

### 7.2.1 Representation of machine along the three phase spatial rotor <br> frames. ( $\alpha$ frames RYB and ryb)

Stator and rotor quantities are denoted by subscripts which give the particular phase. Upper case letters denote stator quantities and lower case letters denote rotor quantities.

The machine representation is shown in figure 7.1. The performance equations along the above-mentioned physically existing reference axes result in a set of six complicated simultaneous differential equations with timevarying co-efficients. These time-verying co-efficients are introduced by stator-rotor mutual inductances, which are sinusoidal functions of the angle between stator and rotor axes. These angles for contant rotor speed are linear functions of time.

### 7.2.2 Representation of machine <br> along stator DRO and rotor <br> dqo axes - Irame

The above-mentioned set of six differential equetions with time-varying co-efficients con be reduced to a set of six linear differential equations with constant co-efficients by splitting the air-gep m.m.f. into components along two perpendicular axes. Since there are no two axes of symmetry (i.e. no brushes or salient poles) to dictate any perticular choice of position for the reference axes, the $D Q O$ axes of stator and dqo axes of rotor are orientated such that $D$ and d axes coincide with the R axes of the stator. This makes the $D$ axis to be the physically existing reference axis.


Figure 7.2 Hypothetical $\alpha^{\prime}$ Reference Frame. Stator axes DQO And Rotor Axes dqo Stationary In Space With Axes D And d Coincident With RAxis.

Figure 7.1 Physically Existing $\propto$ Reference Frame. Stator Axes RYB Stationary In Space And Rotor Axes ry ${ }^{5}$ Rotating With Rotor.

This transformation results in non-holonomic reference frame, rotor dqo coils carrying currents at supply frequency given $f$ and stator $D Q O$ coils carrying currents also at supply irequency $f$. It may be noted that the $\alpha^{\prime}$ coils of stator and rotor are stationary in space. Such representation of the machine is shown in figure 7.2. The transfornation tensors which transform the holonomic three spatial axes $R Y B$ and ryb quantities to nonholonomic DQO and dqo axes quantities are given in figures 7.3 and 7.4 in terms of currents. If time is so measured that at time zero the rotor $r$ axis is coincident with stator $R$ axis then the stator and rotor transformation tensors given by figures 7.3 and 7.4 become identical at instant $t=0$. The same transformation is applied to the stator voltages. Figure 7.5 shows the idealized line to line and line to neutral voltage wave-form at the stator terminals, whereas figure 7.6 shows the stator line to neutral voltage when transforned to $D Q$ axes voltages. It may be noted that no voltage can exist along 0 axis for the line to line and line to neutral voltage wave-forms show, and hence no current can exist along that axis. The stator $D$ axis voltage wave-form is identical to stator $R$ axis voltage wave-form because the $D$ axis was taken to be coincident with $R$ axis. Table 7.1 is a summary of line to neutral and $D Q$ axes voltages.


Figure 7.3 Stator DQO Quantities Expressed In Terms Of Stator RYB Quantities. D Axis Stationary In Space And Coincident With The Stationary R Axis.


Or angle between $r$ and $d$ axes at any instant of time t.

$$
=w_{r}{ }^{\dagger}
$$

Figure 7.4 Rotor dqo Quantities Expressed In Terms Of Rotor ryb Quantities. d Axis Stationary In Space And Coincident With Stator D Axis. Rotor rAxis Rotating With Respect To dqo Axes At A Speed $w_{r}$.


Figure 7.5 Idealised Instanteneous Line To Line And Line To Neutral Output Voltage Of The Invertor.


Figure 7.6 Idealised (Instantaneous) Stator Line To Neutral Voltages Transformed To Stator DQO Voltages.

Table 7.1 CONVERSION OF PHASE VO TAGGS INTO DIFRCT AND QUTADRATURE AXIS VOITAGES

Time/Period in Degrees	$\stackrel{\text { RIT }}{\text { V\% }}$ INV	$\mathrm{YN}_{\text {wiv }}$	$\mathrm{BN}_{\mathrm{V}_{\text {INV }}}$
$0^{\circ}-60^{\circ}$	${ }_{\frac{1}{2}} \mathrm{P} \hat{V}_{\text {INV }}$	$-1^{P} \hat{V}_{\text {INV }}$	$\frac{1}{2}^{\mathrm{P}} \hat{\mathrm{V}}^{\text {INV }}$
$60^{\circ}-120^{\circ}$	${ }_{1} \mathrm{P}^{\mathrm{V}_{\text {INVV }}}$	$-\frac{1}{2} \mathrm{P}^{\hat{\mathrm{V}}} \mathrm{INTV}$	$-\frac{1}{2} \mathrm{P}^{n} \mathrm{~V}_{\text {IITV }}$
$120^{\circ}-180^{\circ}$	${ }_{\frac{1}{2}}{ }^{P} \hat{V}_{\text {IINV }}$	${ }_{\frac{1}{2}} \mathrm{P} \hat{V}_{\text {INV }}$	$-1 \mathrm{P}^{\hat{V}_{\text {INJ }}}$
$180^{\circ}-240^{\circ}$	$-\frac{1}{2}{ }^{P} \hat{V}_{\text {IINV }}$	$1^{P} \mathrm{~V}_{\text {INV }}$	$-\frac{1}{2} P^{A} V_{I M V}$
$240^{\circ}-300^{\circ}$	$-\mathrm{I}^{\mathrm{P}} \mathrm{V}_{\text {INV }}$	$\stackrel{1}{2}^{\text {P }} \mathrm{V}_{\text {tinv }}$	${ }^{\frac{1}{2}} \mathrm{P}^{\hat{V}_{\text {INV }}}$
$300^{\circ}-360^{\circ}$	$-\frac{1}{2}^{P} \hat{V}^{\text {minV }}$	- $\frac{1}{2}^{P} \hat{V}_{\text {INV }}$	${ }^{1} \mathrm{P}^{\mathrm{V}_{\text {IINV }}}$

Table 7.1 CONVERSION OH
PHAS VOITAGES INTO DTREXT AID QUADRATURE AXIS VOLTAGES

Time/Period in Degrees	In terms of peak phase voltage	
	${ }^{\text {® }}$ D	${ }^{+}$
$0^{\circ}-60^{\circ}$	${ }_{\frac{1}{2}} \mathrm{P}^{\hat{V}} \mathrm{~V}_{\text {INVV }}$	$-\frac{(3)^{\frac{1}{2}}}{2}-\hat{V}_{\text {INV }}$
$60^{\circ}-120^{\circ}$	${ }_{1} \mathrm{P}_{\mathrm{V}_{\text {IHV }}}$	0
$120^{\circ}-180^{\circ}$	$\frac{1}{2}^{\underline{T}} \hat{V}_{\text {INV }}$	
$180^{\circ}-240^{\circ}$	$-\frac{1}{2}^{P A}{ }^{\text {V }}$ ITVV	$+\frac{(3)^{\frac{1}{2}}}{2} \mathrm{P}_{\mathrm{V}}^{\mathrm{INV}}$
$240^{\circ}-300^{\circ}$	$-I^{P} \hat{V}_{\text {INV }}$	0
$300^{\circ}-360^{\circ}$	$-\frac{1}{2} \mathrm{P}^{\hat{V}}$ INV	$-\frac{(3)^{\frac{1}{2}}}{2} P_{V} \hat{V}_{\text {INVV }}$

Taile 7.1 CONVERSION OR
PIASE TOTATES INTO DIRECT
$\stackrel{\sim}{\sim}$
ANJQTATRLTU AXIS VOLTAGES

Timo/Soriod in Degrees	In teras of crest line to line voltage		In terms of time fundamental r.m.s. line to line voltage	
	${ }^{\text {® }}$	${ }^{*}$	${ }_{\text {V }}$	$\nabla_{2}$
$0^{\circ}-60^{\circ}$	${ }_{\frac{4}{3} \hat{V}_{\text {INV }}}$	$-\frac{I}{(3)^{2}} \mathrm{~V}_{\mathrm{INV}}$	$\frac{\pi}{3(6)^{\frac{2}{2}} \mathrm{I}_{1} \mathrm{PIMS} \text { INV }}$	$-\frac{1}{3(2)^{\frac{1}{2}}} \frac{\mathrm{~V}}{1 \mathrm{RMS}}$
$60^{\circ}-120^{\circ}$	$\frac{2}{3} \mathrm{I}^{\mathbf{v}}$	0	$\frac{2 \pi}{3(6)^{2}} \mathrm{I}_{\mathrm{V}}^{\text {RIIIS }}$ INV	0
$120^{\circ}-180^{\circ}$		$+\frac{1}{(3)^{\frac{I}{2}}{ }^{\frac{A}{V}} \underline{I N V}}$	$\frac{\pi}{3(6)^{\frac{1}{3}} \mathrm{I}_{1} \mathrm{RMIS}} \mathrm{INV}$	$+\frac{1}{3(2)^{\frac{1}{2}}} V_{1}^{\mathrm{IRNSI}}$
$180^{\circ}-240^{\circ}$	$-{ }^{\text {II }} \underline{V}_{\text {II.V }}$	$+\frac{1}{(3)^{\frac{1}{2}}} \hat{V}_{I N V}$	$\frac{\pi}{3(5)^{\frac{1}{2}}} \mathrm{I}_{1}^{\mathrm{BIIS}} \mathrm{INV}$	$+\frac{1}{3(2)^{\frac{1}{2}}} \mathrm{I}_{\mathrm{V}}^{\mathrm{RMIS}} \mathrm{INV}$
$240^{\circ}-300^{\circ}$	$-\frac{2}{3} \mathrm{I}_{\mathrm{v}_{\text {InN }}}$	0	$-\frac{2 \pi}{3(6)^{\frac{1}{2}}} I_{1} \text { RMIS }$	0
$300^{\circ}-360^{\circ}$	$-\frac{-\dot{\sigma}^{i} \hat{V}}{\text { INV }}$	$-\frac{I}{(3)^{\frac{2}{3}}} \hat{V}_{I N V}$	$-\frac{\pi}{3(6)^{\frac{1}{2}}} \mathrm{I}_{1} \mathrm{INITS}$	$-\frac{1}{3(2)^{\frac{1}{3}}} I_{\mathrm{V}}^{\mathrm{RMS}} \mathrm{INV}$

The impedance tensor ${ }^{Z} \alpha^{\prime} \beta^{\prime}$
along the stator $D Q O$ and rotor dqo axes can be obtained by inspection of figure 7.2 and is shown in figure 7.7. Since the rotor is short-circuited no external voltage can exist in the rotor dqo axes. The impressed voltage and the response current along $\boldsymbol{\alpha}$ 'reference frame is shown in figure 7.8 .

### 7.2.3 Representation of machine along non-holonomic formard and backward revolving FBO and fbo axes - $\alpha$ " frame

These are the Forstescue symmetrical components except that they are now applied directly in time domain in place of frequency domain. Transformation to this reference frame is introduced for three purposes viz:-
i) in order to reduce the number of terms of the impedance tensor ${ }^{Z} \alpha^{\prime} \beta^{\prime}$;
ii) the relatively easier elimination of rotor axes (since no impressed voltages are present in the rotor), resulting in a matrix which is diagonal and hence evaluation of the admittance tensor $Y \mathcal{Y}^{\prime \prime} \alpha^{\prime \prime}$ is greatly simplified; iii) the resulting equations of response are similar, for the machine at standstill, to that of a short-circuited transformer. This makes possible the direct use of familiar equivalent circuit parameters.

The representation of the machine along these new


Figure 7.7 Induction Motor Impedance Tensors Along DQO And dqo Axes.


Figure 7.8 Impressed DQO And dqo Voltages And Response Currents.
reference axes is shown in figure 7.9. The transformation tensors ${ }^{\circ} \alpha^{\prime \prime \prime}$ " which relates $\alpha^{\prime}$ quantities to $\alpha^{\prime \prime}$ quantities is shown in figure 7.10. The FBO and fbo axes voltages can be derived from $D Q O$ and dqo axes voltages from the relation

$$
\begin{equation*}
\mathrm{v}^{\prime \prime}=\dot{C}^{\prime} \alpha^{\prime} \alpha^{\prime \prime} \alpha^{\prime} \tag{7.I}
\end{equation*}
$$

where the matrix representing $\dot{C}^{\alpha} \alpha^{\prime \prime}$ is the conjugate of the transpose of the matrix representing ${ }^{c} C^{\prime} X^{\prime}$ " and is shown in figure 7.11.

The impedance tensor ${ }^{2} \alpha^{\prime} \beta$ ' along the previous reference frame $\alpha^{\prime}$ can be transformed to fit into the new reference frame $\alpha^{\prime \prime}$ by

$$
\begin{equation*}
Z^{\prime \prime} \beta^{\prime \prime}={ }^{Z} \alpha^{\prime} \beta^{\prime}{ }^{\circ} \alpha^{\prime} \alpha^{\prime \prime} \sigma^{\beta^{\prime}} \beta^{\prime \prime} \tag{7.2}
\end{equation*}
$$

${ }^{2} \alpha^{\prime \prime} \beta^{\prime \prime}$ is evaluated in steps shown in figures 7.12 and 7.13.

The performance equation for this reference frame is

$$
\begin{equation*}
{ }_{\alpha}^{v}{ }^{\prime \prime}=Z_{\alpha "} \beta^{\prime \prime} i^{\beta^{\prime \prime}} \tag{7.3}
\end{equation*}
$$

### 7.3 Elimination of Rotor Axes

Since there is no impressed voltage along the rotor axes, it is convenient to eliminate these axes. Let the


Figure 7.9 Hypothetical Forward And Backward Rotating $\alpha^{\prime \prime}$ Reference Frame.


Figure 7.10 $\begin{aligned} & \text { Currents } O \text { \& } \alpha^{\prime} \text { Reference Frame Expressed. In Terms Of Currents Of } \alpha^{\prime \prime} \text { Reference Frame. }\end{aligned}$

$v_{o}, v_{d}$ and $v_{q}$ are 0 because the rotor is short-circuited.
${ }^{v} O$ is 0 because the phase voltages are such that no zero sequence voltage can exist.

Figure 7.11 Voltages Of $\alpha$ " Reference Frame Expressed In Terms Of Voltages Of $\alpha^{\prime}$ Reference Frame.


Figure 7.12 Steps In Converting $Z_{\alpha_{\beta}^{\prime}}$ To $Z_{\alpha^{\prime} \beta^{\prime \prime}} \quad$ (Step 1)


Figure 7.13 Induction Motor Impedance Tensors Along $\propto$ "Reference Frame.
voltage, current and impedance of the motor along $\alpha^{\prime \prime}$ reference axes be each split into two sets, one set representing the stator axes and the other set representing the rotor axes. Hence voltages, currents and impedances can be written as

$$
\begin{align*}
& v^{\prime \prime}={ }^{v} \alpha^{\prime \prime}+{ }^{v} \alpha_{r}^{\prime \prime}  \tag{7.4}\\
& { }_{i} \alpha^{\prime \prime}=i^{\prime \prime}+i^{\alpha_{r}^{\prime \prime}}  \tag{7.5}\\
& { }^{2} \alpha^{\prime \prime} \beta^{\prime \prime}={ }^{\prime} \alpha_{s}^{\prime \prime} \beta_{S}^{\prime \prime}+z^{\prime \prime} \alpha_{r} \beta_{r}^{\prime \prime} \tag{7.6}
\end{align*}
$$

where the subscripts $\alpha_{S}^{\prime \prime}$ denote the stator reference axes (FBO) and $\alpha_{r}^{\prime \prime}$ the same for rotor (ibo).

Hence,

$$
\begin{align*}
& v^{\prime \prime}{ }_{S}=Z_{\alpha_{S}}^{\prime \prime} \beta_{S}^{\prime \prime}{ }_{i} \alpha_{s}^{\prime \prime}+Z \alpha_{s}^{\prime \prime} \beta_{r}^{\prime \prime i^{\prime}} \alpha_{r}^{\prime \prime}  \tag{7.7}\\
& { }^{v} \alpha_{r}^{\prime \prime}=Z_{\alpha_{r}^{\prime \prime}} \beta_{s}^{\prime \prime} i^{\prime \prime}+Z_{S}^{\prime \prime} \beta_{r}^{\prime \prime}{ }^{\prime} \alpha_{r}^{\prime \prime} \tag{7.8}
\end{align*}
$$

Equation 7.8 can be rewritten as

$$
\begin{align*}
& Z_{\alpha_{r}^{\prime \prime} \beta_{r}^{\prime \prime}} \alpha^{\prime \prime}=v_{r}^{\prime \prime}-\alpha_{r}^{\prime \prime} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{S}^{\prime \prime}  \tag{7.9}\\
& \alpha_{r}^{\prime \prime}=\beta_{r}^{\prime \prime} \alpha_{r}^{\prime \prime}{ }_{\left(v_{\gamma}^{\prime \prime}\right.}-Z_{r}^{\prime \prime} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{S}^{\prime \prime}
\end{align*}
$$

Substituting equation 7.10 in equation 7.7 gives

$$
{ }^{v_{\alpha}^{\prime \prime}}=Z_{S}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{S}^{\prime \prime}+Z_{S}^{\prime \prime} \beta_{S}^{\prime \prime} \beta_{r}^{\prime \prime} \alpha_{r}^{\prime \prime}\left(v_{\alpha_{r}^{\prime \prime}}-Z^{\prime} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{S}^{\prime \prime}\right)
$$

$$
\begin{align*}
& +{ }^{2} \alpha_{\mathrm{S}}^{\prime \prime} \beta_{\mathrm{S}}^{\prime \prime} \\
& \left.-Z_{\alpha_{S}^{\prime \prime}}^{\prime \prime} \beta_{Y}^{Y} \beta^{\prime \prime} \alpha_{Z_{\alpha_{Y}^{\prime \prime}}^{\prime \prime}} \beta_{S}^{\prime \prime}\right) \\
& \times i^{\alpha^{\prime \prime}} \tag{7.I工}
\end{align*}
$$

Since $v_{x}{ }_{r}=0$, equation 7.11 reduces to

$$
\begin{align*}
v_{l \alpha_{S}^{\prime \prime}}^{\prime} & ={ }^{v} \alpha_{s}^{\prime \prime} \\
& =\left(Z_{\alpha_{S}^{\prime \prime}}^{\prime \prime} \beta_{S}^{\prime \prime}-Z_{\left.\alpha \alpha_{S}^{\prime \prime} \beta_{r}^{\prime \prime} Y^{\prime \prime} \beta_{r}^{\prime \prime} \alpha_{r_{Z}}^{\prime \prime} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime}\right) i^{\prime \prime} \alpha_{S}^{\prime \prime}}\right. \\
& =Z_{I \alpha_{S}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{S}^{\prime \prime}} \tag{7.12}
\end{align*}
$$

where

$$
\begin{equation*}
Z_{1 \alpha_{S}^{\prime \prime}} \beta_{S}^{\prime \prime}=Z^{\prime \prime} \alpha_{S}^{\prime \prime} \beta_{S}^{\prime \prime}-Z_{\alpha_{S}^{\prime \prime} \beta_{r}}^{\beta_{r}^{\prime \prime} \alpha_{r_{Z}}^{\prime \prime} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime}} \tag{7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{I} \alpha_{S}^{\prime \prime}=v_{\alpha_{S}^{\prime \prime}}-Z_{\alpha_{s}^{\prime \prime}}^{\prime \prime \xi_{r}}{ }^{\beta_{r}^{\prime \prime} \alpha_{r}^{\prime \prime}}{ }_{v_{\alpha_{r}}^{\prime \prime}} \tag{7.14}
\end{equation*}
$$

## 7.4 $\frac{\text { Evaluation of Stator and }}{\text { Rotor Currents along }}$

Equation 7.13 is evaluated by first determining
$Y^{\beta_{r}^{\prime \prime} \alpha_{r}^{\prime \prime}}$ and then post-multiplying it with $Z_{\alpha_{r}^{\prime \prime}} \beta_{S}^{\prime \prime}$ shown in figure 7.14. The result is then pre-multiplied by ${ }^{Z} \alpha_{S}^{\prime \prime} \mathcal{\beta}_{r}^{\prime \prime}$ as shown in figure 7.15. Finally, this triple product is subtracted from $Z^{\prime \prime}{ }_{\mathrm{S}} \hat{\beta}_{\mathrm{S}}$ to yield $\mathrm{Z}_{1} \boldsymbol{\alpha}_{\mathrm{S}} \mathcal{R}_{\mathrm{S}}{ }^{\prime \prime}$ as given in figure 7.16. It may be noted that the matrix representing $Z \alpha_{r}^{\prime} \beta_{r}^{\prime \prime}$ is diagonal and hence $Y{ }^{R_{r}^{\prime \prime} \alpha_{r}^{\prime \prime}}$ is simply evaluated by allowing its elements to be the reciprocal of those in the matrix representing $Z^{\prime \prime} \alpha_{r}^{\prime \prime} \beta_{r}^{\prime \prime}$. Having evaluated $Z_{I} \alpha_{S}^{\prime \prime} \rho_{S}^{\prime \prime}$, $i{ }^{\prime \prime}{ }^{\prime \prime}$ can be evaluated from

$$
\begin{equation*}
i^{\alpha_{S}^{\prime \prime}}=Y^{1 \beta_{S}^{\prime \prime} \alpha_{v_{v}^{\prime \prime}}^{\prime \prime}} \tag{7.15}
\end{equation*}
$$

as shown in figure 7.17. Since the matrix representing the impedance tensor ${ }^{2}{ }^{1} \alpha_{\text {" }}{ }_{S} \beta_{S}^{\prime \prime}$ is diagonal, the admittance the rotor current $i \alpha^{\prime \prime}$ from equation 7.8 is

$$
\begin{equation*}
\alpha^{\prime \prime}{ }_{r}^{\prime \prime}=-Y \beta_{r}^{\prime \prime} \alpha_{r_{Z}^{\prime \prime}}^{\alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime} \alpha_{s}^{\prime \prime}} \tag{7.16}
\end{equation*}
$$

Substituting $i^{\prime \prime}{ }^{\prime \prime}$ from equation 7.15 to equation 7.16 the rotor currents are obtained

$$
\begin{equation*}
\alpha^{\alpha_{r}^{\prime \prime}}=-Y \beta_{r}^{\prime \prime} \alpha_{r_{Z^{\prime}}^{\prime \prime}} \alpha_{r} \beta_{S}^{\prime \prime} Y^{I} \alpha_{S}^{\prime \prime} \beta_{V_{\alpha^{\prime \prime}}^{\prime \prime}}^{\prime} \tag{7.17}
\end{equation*}
$$



Figure 7.14 Steps In Eliminating Rotor Axes. (Step 1)


Figure 7.15 Steps In Eliminating Rotor Axes. (Step 2)

$$
Z_{1 \alpha_{s}^{\prime \prime} \beta_{s}^{\prime \prime}}=Z_{\alpha_{s}^{\prime \prime} \beta_{s}^{\prime \prime}}-Z_{\alpha_{s}^{\prime \prime} \beta_{r}^{\prime \prime}} Y^{\beta_{r}^{\prime \prime} \alpha_{s}^{\prime \prime}} Z_{\alpha_{r}^{\prime \prime} \beta_{s}^{\prime \prime}}
$$



Figure 7.16 Induction Motor Impedance Along $\alpha_{s}^{\prime \prime}$ Reference Frame. Short-Circuited Rotor Reference Frame $\alpha_{\gamma}^{\prime \prime}$ Eliminated. (Step 3)


Figure 7.17 Induction Motor Stator Currents Alang $\alpha_{3}^{\prime \prime}$ Reference Frame. Short-Circuited Rotor Reference Frame Eliminated.

The quantity $Y \beta^{\prime \prime} \alpha^{\prime \prime}{ }_{Z_{Z}} \alpha_{r}^{\prime \prime} \beta_{S}^{\prime \prime}$ has already evaluated and is shown in figure 7.14. The evaluation of
${ }_{Y} \beta_{r}^{\prime \prime \prime} \alpha_{r_{Z}}^{\prime \prime}{ }_{Y} \beta_{S}^{\prime \prime} Y^{I \alpha_{S}^{\prime \prime}} \beta_{S}^{\prime \prime}$ and the equations for the rotor currents are shown in figures 7.18 and 7.19 respectively.

### 7.5 The Differential

Equations for Currents
Equations 7.15 and 7.17 give the forward and backward rotating currents of the stator and the rotor. These currents are also given in matrix form in figures 7.17 and 7.19. Since there is no zero-sequence forcing function $v_{0}$ and $v_{o}$, no zero-sequence currents can exist in the stator and rotor. Rewriting the equations, the forward rotating stator current $i^{F}$ is given by

$$
\begin{align*}
& i^{F}= v_{F} /\left[\left(R_{S}+p I_{S}\right)-p M^{2}\left(p-j p \theta_{r}\right) /\left\{R_{r}+I_{r}\right.\right. \\
&\left.\left.\left(p-j p \theta_{r}\right)\right\}\right] \\
&=\left\{\left(v_{D}+j v_{Q}\right) /(2)^{\frac{1}{2}}\right\} /\left[\left(R_{G}+p I_{S}\right)-p M^{2}\left(p-j p \theta_{r}\right) /\right. \\
&\left.\left\{R_{r}+L_{r}\left(p-j p \theta_{r}\right)\right\}\right] \tag{7.18}
\end{align*}
$$

where

$$
p=d / d t
$$


$\beta_{r}^{\prime} \alpha_{s}^{\prime \prime}=$
F
B


Figure 7.18 Short-Circuited Rotor Impedance Which Relates The Rotor Currents To The Stator Impressed Voltages Along $\alpha^{\prime \prime}$ Reference Frame.


Figure 7.19 Rotor Current Along $\propto \propto^{\prime \prime}$ Reference Frame.

The backward rotating stator current $i^{B}$ is given by

$$
\begin{align*}
i^{B}= & v_{B} /\left[\left(R_{S}+p I_{S}\right)-p M^{2}\left(p+j p \theta_{r}\right) /\left\{R_{r}+I_{r}\right.\right. \\
& \left.\left.\left(p+j p \theta_{r}\right)\right\}\right] \\
= & \left\{\left(v_{D}-j v_{Q}\right) /(2)^{\frac{1}{2}}\right\} /\left[\left(R_{S}+p I_{S}\right)-p M^{2}\left(p+j p \theta_{r}\right) /\right. \\
& \left.\left\{R_{r}+I_{r}\left(p+j p \theta_{r}\right)\right\}\right] \tag{7.19}
\end{align*}
$$

The forward rotating rotor current $i^{f}$ is given by

$$
\begin{aligned}
i^{f}= & -\left\{M\left(p-j p \theta_{r}\right) v_{F}\right\} /\left[\left(R_{s}+p L_{S}\right)\left\{R_{r}+L_{r}\left(p-j p \theta_{r}\right)\right\}\right. \\
& \left.-p M M^{2}\left(p-j p \theta_{r}\right)\right] \\
= & \left\{M\left(p-j p \theta_{r}\right)\left(v_{D}+j v_{Q}\right) /(2)^{\frac{1}{2}}\right\} /\left[M^{2}\left(p-j p \theta_{r}\right)\right. \\
& \left.-\left(R_{s}-p L_{s}\right)\left\{R_{i}+L_{r}\left(p-j p \theta_{r}\right)\right\}\right](7.20)
\end{aligned}
$$

The backward rotating rotor current $i^{b}$ is given by

$$
\begin{align*}
i^{b}= & -\left\{\mathbb{N}\left(p+j p \theta_{r}\right) v_{r} ; /\left[( R _ { S } + p L _ { S } ) \left\{R_{r}+I_{r}\left(p+j p \theta_{r}\right)\right.\right.\right. \\
& \left.-p M^{2}\left(p+j p \theta_{r}\right)\right] \\
= & \left\{M\left(p+j p \theta_{r}\right)\left(v_{D}-j v_{Q}\right)^{2} /(2)^{\frac{1}{2}}\right\} /\left[p M^{2}\left(p+j p \theta_{r}\right)\right. \\
& \left.-\left(R_{S}+p I_{S}\right)\left\{R_{r}+I_{r}\left(p+j p \theta_{r}\right)\right\}\right] \tag{7.21}
\end{align*}
$$

It may be noted that the above equations with rotor at standstill $\left(\mathrm{p} \theta_{r}=0\right)$ are similar to that of a transformer with the secondary short-circuited, hence the parameters of the conventional equivalent circuit of figure 4.1 are directly applicable.

The direct axis stator and rotor currents can be easily evaluated by the connection tensors $c^{\infty} \times$ ' (Figure 7.10) which when attached to the quantities of $\alpha^{\prime \prime}$ reference frame, transform them to quantities of $\alpha^{\prime}$ reference frame. The direct axis stator current $i^{D}$ is therefore

$$
\begin{equation*}
i^{D}=\left(i^{F}+i^{B}\right) /(2)^{\frac{1}{2}} \tag{7.22}
\end{equation*}
$$

Since the $D$ axis of $\alpha^{\prime}$ reference. frame is made coincident on the physically existing $R$ axis of $\mathcal{X}$ reference frame, then

$$
\begin{equation*}
i^{D}=i^{R} \tag{7.23}
\end{equation*}
$$

Similarly the direct axis rotor current is given by

$$
\begin{equation*}
i^{d}=\left(i^{i}+i^{b}\right) /(2)^{\frac{1}{2}} \tag{7.24}
\end{equation*}
$$

In this case the rotor $r$ phase current is not the same as the rotor $d$ axis current. This is because the $r$ axis of the $\alpha$ reference frame is sweeping past the stationary d axis of $\alpha^{\prime}$ reference frame with the speed
of that of the rotor. To determine the actual
current of the rotor, another transformation, which involves rotor speed, has to be introduced in order to project $i^{\text {d }}$ and $i^{\text {q }}$ along the rotating $r$ axis to derive $i^{r}$. Since the actual rotor current is not of importance in this investigation, no attempt is made to determine it. The rotor copper loss will, however, be calculated on the basis of the hypothetical d axis current.

### 7.6 Evaluation of Electromagnetic Torque

Torque is produced by the interaction of the currents $i{ }^{\prime \prime \prime}$ and the air-gap flux density $B^{\prime \prime}{ }^{\prime \prime}$. The flux density $B_{\alpha}$ " is given by the product of the torque tensors $G_{\alpha}$ " $\beta$ " and the current $i x^{\prime \prime}$. The torque tensors $\alpha^{\prime \prime} \beta^{\prime \prime}$ contains only those terms of the impedance tensors $\alpha^{\prime \prime} \rho^{\prime \prime}$ which involve rotor velocity $p \theta_{r}$ and hence can be establsihed by inspection of ${ }^{4} \alpha^{\prime \prime} \beta^{\prime \prime}$ (Figure 7.13)。

Therefore

$$
\begin{equation*}
{ }^{B} \alpha^{\prime \prime}=G^{\prime \prime} \beta^{\prime \prime} i^{1 \beta^{\prime \prime}} \tag{7.25}
\end{equation*}
$$

and

$$
\begin{equation*}
T \quad=j w_{r}\left(i \alpha^{\prime \prime}\right)^{\operatorname{conj} \cdot B^{\prime \prime}} \alpha^{\prime \prime} \tag{7.26}
\end{equation*}
$$

Equations 7.25 and 7.26 are shown in matrix form in figure 7.20. The above value of torque has to be multiplied by

$B_{\alpha^{\prime \prime}}$

Figure 7.20 Evaluation Of Torque Per Phase In Terms Of The Currents Along $\alpha^{\prime \prime}$ Reference Frame.

3 to obtain the total three-phase torque. Therefore

$$
\begin{equation*}
T=j 3 W_{I}\left(i_{i} B_{i}^{b *}-i^{F_{i}{ }^{f}}\right) \tag{7.27}
\end{equation*}
$$

where $i^{b *}$ and $i^{f *}$ are the conjugates of $i^{b}$ and $i^{f}$
and $\quad w_{r}$ is the rotor speed.
7.7 Generalization of the Differential Equations giving Stator and Rotor Sequence Currents

The equations 7.18 to 7.21 are cumbersome, and are best written in a modified general form so that a general solution can be formulated. No approximations are made and two time constants are introduced

$$
\begin{align*}
& \text { For stator } \tau_{S}=I_{S} / R_{S}  \tag{7.28}\\
& \text { For rotor } \tau_{r}=I_{r} / R_{r} \tag{7.29}
\end{align*}
$$

Another constant, called the leakage factor, is also introduced as

$$
\begin{equation*}
\sigma=1-M^{2} /\left(I_{S} I_{r}\right) \tag{7.30}
\end{equation*}
$$

Considering rotor speed constant, the term $p \theta_{r}\left(=w_{r}\right)$ is constant (Equation 7.18).

The forward rotating stator current is therefore

$$
\begin{aligned}
& i^{F}=\frac{\left(v_{D}+j v_{Q}\right) /(2)^{\frac{1}{2}}}{I_{S}\left(\frac{R_{S}}{I_{S}}+p\right)-\frac{p M^{2}\left(p-j w_{r}\right)}{R_{r}+I_{r}\left(p-j w_{r}\right)}} \\
& =\frac{I}{(2)^{\frac{1}{2}}} \frac{\left(v_{D}+j v_{Q}\right)\left\{R_{r}+p I_{r}-j I_{r} W_{r}\right\}}{I_{S}\left(\frac{l}{T_{S}}+p\right)\left\{R_{r}+p I_{r}-j w_{r} I_{r}\right\}-\left(p^{2} I^{2}-j p I^{2} W_{r}\right)} \\
& =\frac{1}{(2)^{\frac{1}{2}} L_{s}} \frac{\left(v_{D}+j v_{Q}\right)\left\{\frac{I}{T_{r}}+p-j w_{r}\right\}}{\left(\frac{I}{T_{S}}+p\right)\left\{\frac{1}{T_{r}}+p-j w_{r}\right\}-\left\{\frac{p^{2} I^{2}}{I_{S} L_{r}}-j \frac{D M^{2}}{I_{S} L_{r}} w_{r}\right\}} \\
& =\frac{1}{(2)^{\frac{1}{2}} I_{S}} \frac{\left(v_{D}+j v_{Q}\right)\left\{\frac{I}{F_{r}}+p-j w_{r}\right\}}{\frac{I}{T_{S}}\left(\frac{1}{T_{r}}+p-j w_{r}\right)+p\left(\frac{I}{\tau_{r}}-j w_{r}\right)+} \\
& p^{2}\left(I-\frac{M^{2}}{L_{s} L_{r}}\right)-j \frac{I^{2} w_{r}}{I_{s} L_{r}} \\
& \left(v_{D}+j v_{Q}\right)\left\{\frac{I}{T_{r}}+p \cdot j v_{r}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{I}{(2)^{\frac{1}{2}} I_{S}} \frac{\left(v_{D}+j v_{Q}\right)\left\{\frac{I}{T_{r}}+p-j w_{r}\right\}}{2+p\left\{\frac{I}{T_{S}}+\frac{I}{T_{r}}-j w_{r}\left(I-\frac{I^{2}}{I_{G} T_{r}}\right)\right\}-\frac{I}{T_{S}}\left(\frac{I}{T_{r}}-j w_{r}\right)} \\
& =\frac{1}{(2)^{\frac{1}{2}} L_{S} \sigma} \frac{\left(v_{D}+j v_{Q}\right)\left\{\frac{I}{T_{r}}+p-j w_{r}\right\}}{p^{2}+p\left\{\frac{I}{\sigma T_{S}}+\frac{I}{\sigma T_{r}}-j w_{r}\right\}+\frac{I}{\sigma T_{S}}\left(\frac{I}{T_{r}}-j w_{r}\right)} \tag{7.31}
\end{align*}
$$

Inspection of the original differential (Equations 7.18 and 7.19) for the stator sequence currents, shows that they are conjugates of each other. Therefore, the backward rotating stator current can be written down by inspection of equation 7.31 as

$$
i^{B}=\frac{1}{(2)^{\frac{1}{2}} I_{S} S} \frac{\left(v_{D}-j v_{Q}\right)\left\{\frac{1}{T_{r}}+p+j w_{r}\right\}}{p^{2}+p\left\{\frac{1}{\sigma \tau_{S}}+\frac{1}{\sigma T_{r}}+j w_{r}\right\}+\frac{1}{\sigma \tau_{S}}\left(\frac{1}{T_{r}}+j w_{r}\right)}
$$

(7.32)

These two equations (7.31 and 7.32) are given similar mathematical forms after defining certain constants as follows

$$
\begin{align*}
B_{F} & =\left\{1 /\left(\sigma T_{S}\right)+1 /\left(\sigma T_{r}\right)-j w_{r}\right\}  \tag{7.33}\\
B_{B} & =\left\{1 /\left(\sigma T_{S}\right)+1 /\left(\sigma T_{r}\right)+j w_{r}\right\} \\
& =B_{F}^{*}  \tag{7.34}\\
C_{F} & =\left(I / T_{r}-j w_{r}\right) /\left(\sigma T_{S}\right)  \tag{7.35}\\
C_{B} & =\left(I / \tau_{r}+j w_{r}\right) /\left(\sigma T_{S}\right) \\
& =C_{F}^{*}  \tag{7.36}\\
D_{F} & =\left(I / T_{r}-j w_{r}\right) \tag{7.37}
\end{align*}
$$

$$
\begin{align*}
D_{B} & =\left(1 / T_{r}+j w_{r}\right) \\
& =D_{F}^{*}  \tag{7.38}\\
K_{S} & =1 /\left\{(2)^{\frac{1}{2}} I_{S} 5\right\} \tag{7.39}
\end{align*}
$$

Substituting equation 7.33 to 7.39 in the equations 7.31 and 7.32 the stator sequence currents are obtained in identical mathematical form as

$$
\begin{align*}
& i^{F}=\left(v_{D}+j v_{Q}\right) K_{S} \frac{p+D_{F}}{p^{2}+p B_{F}+C_{F}}  \tag{7.40}\\
& i^{B}=\left(v_{D}-j v_{Q}\right) K_{S} \frac{p+D_{B}}{p^{2}+p B_{B}+C_{B}} \tag{7.41}
\end{align*}
$$

The forward rotating rotor current from equation 7.20 is

$$
\begin{array}{r}
i^{f}=\left\{M\left(p-j w_{r}\right)\left(v_{D}+j v_{Q}\right) /(2)^{\frac{1}{2}}\right\}\left[\mathbb{N}^{2}\left(p-j w_{r}\right)\right. \\
\left.-\left(R_{s}+p I_{s}\right)\left\{R_{r}+I_{r}\left(p-j w_{r}\right)\right\}\right]
\end{array}
$$

Dividing the numerator and denominator by $R_{r}+L_{r}\left(p-j w_{r}\right)$ the following expression is obtained

$$
\begin{aligned}
&\left.i^{f}=-\mathbb{M}\left(p-j w_{r}\right) / R_{r}+L_{r}\left(p-j w_{r}\right)\right\} \\
& \frac{\left(v_{D}+j v_{Q}\right) /(2)^{\frac{1}{2}}}{\left(R_{S}+p L_{S}\right)-\frac{p M^{2}\left(p-j w_{r}\right)}{R_{r}+I_{r}\left(p-j w_{r}\right)}}
\end{aligned}
$$

The term in []is, by equation 7.18, equal to $i^{F}$. Replacing .this term by equation 7.40 gives

$$
\begin{gathered}
i^{f}=\left[\left\{-\mathbb{N}\left(p-j w_{r}\right)\right\} /\left\{R_{r}+I_{r}\left(p-j w_{r}\right)\right\}\right]\left(v_{D}+j v_{Q}\right) \\
K_{S}\left(p+D_{F}\right) /\left(p^{2}+p B_{F}+C_{F}\right) \\
=\left[\left\{-\mathbb{M}\left(p-j w_{r}\right)\right\} /\left\{L_{r}\left(1 / \tau_{r}+p-j w_{r}\right)\right\}\right]\left(v_{D}+j v_{Q}\right) \\
K_{S}\left(p+D_{F}\right) /\left(p^{2}+p B_{F}+C_{F}\right)
\end{gathered}
$$

Substituting equation 7.37 in the above equation gives

$$
\begin{align*}
& i^{f}= {\left[\left\{-M\left(p-j w_{r}\right)\right\} /\left\{I_{r}\left(p+D_{F}\right)\right\}\right]\left(v_{D}+j v_{Q}\right) } \\
& K_{S}\left(p+D_{F}\right) /\left(p^{2}+p B_{F}+C_{F}\right) \\
&= {\left[\left\{-M\left(p-j w_{r}\right)\right\} / L_{r}\right]\left(v_{D}+j v_{Q}\right) K_{S} /\left(p^{2}+p B_{F}+C_{F}\right) } \tag{7.42}
\end{align*}
$$

Defining another two constants

$$
\begin{equation*}
D_{\tilde{f}}=-j w_{r} \tag{7.43}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{H}_{r} & =-\left(\mathbb{N K}_{s}\right) I_{r} \\
& =-\mathbb{M} /\left\{\mathrm{I}_{s^{\prime}} \mathrm{I}_{r} \sigma(2)^{\frac{1}{2}}\right\} \tag{7.44}
\end{align*}
$$

gives

$$
i^{f}=\left(v_{D}+j v_{Q}\right) K_{r}\left(p+D_{f}\right) /\left(p^{2}+B_{F} p+C_{F}\right)
$$

Since the backward rotating rotor current is the conjugate of the forward rotating rotor current $i^{f}$ then

$$
\begin{equation*}
i^{b}=\left(v_{D}-j v_{Q}\right) K_{r}\left(p+D_{b}\right) /\left(p^{2}+B_{B} p+C_{B}\right) \tag{7.46}
\end{equation*}
$$

where

$$
\begin{align*}
D_{b} & =D_{f}^{*} \\
& =t j w_{r} \tag{7.47}
\end{align*}
$$

From equations $7.40,7.41,7.45$ and 7.46 the sequence currents of both stator and rotor have the same general form

$$
\begin{equation*}
i=\left(v_{D} \pm j v_{Q}\right) K(p+D) /\left(p^{2}+p B+C\right) \tag{7.18}
\end{equation*}
$$

A general solution of the above equation is derived in appendix I. Particular currents could be obtained by giving appropriate values to the constants in equations 7.33 to $7.39,7.43,7.44$ and 7.47. For backward rotating currents $\mathrm{v}_{\mathrm{Q}}$ should be negative.

Knowing the sequence currents, the stator and rotor direct axis currents can be found from equations 7.22 and 7.24. The instantaneous torque can be
calculated from equation 7.27 after determining the instantaneous values of the stator and rotor sequence currents.

Stator and rotor copper loss can be determined after finding the r.m.s. value of $i^{D}$ and $i^{d}$ by numerical integration (Simpson's rule). Iron loss can be calculated by connecting the iron loss simulating resistor for invertor operation right at the stator input end.

Input nower can be calculated by first determining the instantaneous power input, averaging it over one period, and then adding the iron loss. Output power can be calculated by first finding the average torque and then multiplying it with a constant and the speed of the rotor.

A digital computer programme was written to predict the invertor-fed induction motor performance.

### 7.8 Effect of Stator Connection <br> $\frac{\text { (Star or Delta) on Iron Loss }}{\text { Due to Main Flux }}$

The apparent decrease of hysteresis loss in the induction motor when the stator is connected in delta (Section 6.2) is due to basing calculations on a physically non-existing reference frame for the magnetic circuit of the machine.

Figure 7.21 shows the reference axes of line to line and line to neutral three-phase supply voltage.


Figure 7.22 Spatial Configuration Of The Magnetic Circuit Axes Of The Machine.


D

Figure 7.23 Machine Magnetic Circuit DQ Axes (Hypothetical).
(Could be orientated to coincide with either $P_{D}, P_{Q}$ or $L_{D}, L_{Q}$ axes shown in figure 7.24)


Figure 7.21 Axes Configuration Of
Balanced Line To Line And Line To Neutral Voltages Fed To The Stator.


Figure $7.24 \mathrm{P}_{\mathrm{D} \text { \& }} \mathrm{P}_{\mathrm{Q}}$ Axes
(Hypothetical)
Of Line To Neutral
Supply Voltage And
$L_{D} \&{ }_{Q}$ Axes (Hypothetical)
Of Line To Line Supply Voltage.

Figure 7.22 shows the three-phase stator coils spatially distributed by $120^{\circ}$. Excitation of these three coils, say by D.C. would create fluxes in the machine whose directions would be as show by the arrows in figure 7.22. It may be noted that due to the very nature of flux-flow direction, it could be concluded that the magnetic circuit of the machine is star connected, although by the very nature of construction one can hardly visualize this fact. This is also true for D.C. and synchronous machines. Thereforc it can be argued a star connected reforence frame for the magnetic circuit of the machine is a physically existing reference frame. Whatever electro-magnetic cause and effects or phenomenon takes place along these axes are real and physically existing quantitics.

On the contrary the physically existing refercnce axcs for the stator electric circuit would depend on whether the coils are connected in star or delta. If the coils are comected in delta, and calculations, say, for currents are based on the equivalent star, this simply means that these currents are not the physically existing coil currents, but they are hypothetical currents as viewed along the hypothetical star connected reference axes. Calculations based on the hypothetical star currents would yield identical results to that which would be obtained
from the physically existing delta reference frame currents only if the wave-forms do not contain any third harmonics, otherwise the effects of third or triplen harmonic circulating current in the delta, which is absent in the hypothetical star reference frame (no neutral connection), would not be taken into account. This fact is furthor justified because the two reference frame r.m.s. currents are related by a factor of (3) ${ }^{\frac{1}{2}}$ only when there are no triplen harmonics present, and as such star delta transformation is valid for the currents devoid of triplon harmonics.

Since the magnetic circuit of the machine is star connected, the physically existing fluxes along thesc axes (Figure 7.22) would be proportional to the time integral of the voltage wave-form along these axcs. Therofore, for magnetic circuit calculations the reforenco frame for the voltage should always be star connected and oriontated to be coincident to that of the magnetic circuit, irrespective of the nature of the statcr coil connection. This is shown in figures 7.21 and 7.22. This means that if a search coil is placed in the magnetic circuit, the voltage induced in it would have the wave-form of the line to neutral air-gap voltage irrespective of stator coil connection.

In figure 7.23 the machine three-phase magnctic circuit axes are replaced by two mutually perpendicular axes $D$ and $Q$ for ease of calculation and also to eliminate the effect of any time varying component of $Q$ axis on $D$ axis. The $D$ axis is arranged to coincide with the magnetic circuit $R$ axis (denoted by ${ }^{P}$ axis), and $D$ axis phenomena are therefore physically existing, whereas $F_{Q}$, being a non-existing axis, the phenomena taking placc along this axis have no physical existence. Whatever sequence of events take place in the $R$ axis of the magnetic circuit also identically take place along the $P_{D}$ axis. The wave-form of voltage and flux along this axis, due to a star connected stator coil fed from the invertor, is shown in figures 7.26 and 7.27 along with the line to neutral stator voltages showm in figure 7.25. (This assumes negligible stator leakage impedance drop so that the stator-impressed voltage equals the air-gap voltage.) The $P_{Q}$ axis being a hypothetical axis the voltage and flux along this axis as shown in figures 7.28 and 7.29 aro nonexisting. Hence a search coil placed in the magnetic circuit would register the effect of the physically existing flux as shown in figure 7.27.

When the machine stator coils are connected in delta the coils or the electric circuit of the stator sees the


Figure 7.25 Line To Neutral Voltage Fed To The Stator


Figure 7.26 Voltage Along Physically Existing ${ }^{P} D$ Axis Which


Figure 7.27 Flux Along Physically Existing Magnetic Circuit ${ }^{P}{ }_{D}$ Axis.

Figure 7.28 Voltage Along Physically Non-Existing Magnetic Circuit ${ }^{P} Q$ Axis.


Figure 7.29 Flux Along Physically NonExisting Magnetic Circuit ${ }^{P_{Q}}$ Axis.
line to line voltages, the axes of which are no longer coincident with the physically existing star connected magnetic circuit axes as shown in figures 7.21 and 7.22. Therefore the magnetic circuit does not react to these voltages directly but to their components along the physically existing axes of figure 7.22.

The line to linc voltages shown in figure 7.30 are transformed to $D, Q$ axes quantities as shown in figure 7.31. The $D$ axis is made to coincide with that of the line to line voltage across RY terminals as shown in figures 7.21 and 7.24 (denoted by $\mathrm{I}_{\mathrm{D}}$ axis). In this case the $I_{D}$ axis is the physically non-existing one, whereas the $\mathrm{I}_{\mathrm{Q}}$ axis is coincident with the physically existing magnetic circuit $B$ phase axis, but with $180^{\circ}$ phase difference betweon them. Therefore the magnetic circuit sees a voltage variation as shown for the $\Psi_{Q}$ axis (Figure 7.31)。

The above fact can be further substantiated by transforming the line to line $I_{D} I_{Q}$ axes quantities to that of the magnetic circuit $D, Q$ axes which are also coincident with the $P_{D} P_{Q}$ axes of line to neutral voltages. The transformed voltage is shown in figure 7.32. The magnetic circuit $D$ axis being physically existing, the magnetic circuit sees the voltage along this axis which is exactly the same as that of the line to noutral voltage (Pigure 7.5).


Figure 7.30 Line To Line Voltage Fed To The Stator.


Figure 7.31 Voltage Along Physically Existing Magnetic Circuit ${ }^{L_{Q}}$ Axis Which Is Coincident With The Magnetic Circuit - B Axis.

Figure 7.32 Voltage Along Physically Non-Existing Magnetic Circuit ${ }^{P} Q$ Axis .

The general conclusion is, that since the magnetic circuit of the machine is star connected, the flux follows the variation of voltages projected along a star connected reference frame which is coincident with that of the magnetic circuit. Therefore the flux produced in the magnetic circuit follows the line to neutral voltage of supply (neglecting stator leakage impedance drop), irrespective of whether the stator coils are connected in star or delta, and hence the magnetic circuit losses do not depend on the windings being connected in star or delta。

If a machine could be so constructed that its magnetic circuit is delta connected, the iron loss, when fed from the invertor would be less than that for equivalent sinusoidal operation as shown in section 6.2.

## CHAPTER 8

## INDUCTION MOTOR LOAD TESTS

In order to verify the performance theory so far developed in chapters 5 to 7 load tests on the induction motor were carried out.

Load tests under sinusoidal excitation were carried out for two reasons.
i) To tost the accuracy with which the simple equivalont circuit "constants" were determined experimentally.

AND ii) To compare this mode of oporation with that of the invertor operation.

The experimental system was as shown in figure 4.3.

### 8.1 Hindage and Friction Loss of the Induction and D.C. Loading lifotor

In order to determine the electro-magnetic power output of the induction motor 1 from the D.C. power output of the loading motor 2 (Figure 4.3), measurements wore made to determinc the windage and friction losses of the induction D.C. loading motor combination.

The induction motor was uncxcited and drivon by the D.C. loading motor. Rated current was allowed to flow through the ficld of the D.C. loading motor and control of
speed was achieved by varying the armature supply voltage. The windage and friction losses of the combination were determined by calculating the pover input to the armature and subtracting from it the armature copper loss and the brush volt-drop loss. The windage and friction loss of the combination was then

$$
\begin{equation*}
P_{W+F}=V_{A} I_{A}-I_{A}^{2} R_{A}-I_{A} \times 4 \tag{8.1}
\end{equation*}
$$

where
$\mathrm{V}_{\mathrm{A}}=$ D.C. voltage impressed across the armature.
$I_{A}=$ D.C. current 1 lowing through the armature.
The armature resistance $R_{A}$ was determined from the D.C. Volt drop test on the locked armature (Figure 8.1). The windage and friction loss $P_{V+F}$ as determined from equation 8.1 is as shown in figure 8.2. The speed of the combination was determined accurately by a digital tachometer.

### 8.2 Variable Frequency Load Test under Sinusoidal Excitation

This test was carried out to veriey the theory developed in chapter 5, which predicts the induction motor performance under variable frequency sinusoidal operation.

Referring to figure 4.3, variable frequency and


variable voltage were obtained from an alternator, (5). Variable voltage was obtained by controlling the field current of the alternator. Alternator speed was controlled by variation of the armature supply voltage of the D.C. drive motor (6). Adjustment of the field current of this motor enabled fine control of speed. The variable D.C. armature supply voltage of motor (6) was obtained from the field controlled separately excited D.C. generator (7) driven by the induction motor (8) fed from the three-phase mains.

The variable voltage of variable frequency from alternator (5) was fed to the test induction motor (1) via a three-pole double throw switch. This switch was used to change over to invertor operation without disturbing or changing of any leads, so that the test conditions were identical for both sinusoidal and invertor-fed load tests. Three moving iron ammeters were inserted in the stator leads of the test induction motor (1). The power input to the induction motor was measured by the two vattmeter method. A moving iron voltmeter was connected. across the supply leads to measure the voltage input to the induction motor. The frequency of the supply was measured by monitoring the altemator rotor speed by the digital tachometer (2). The speed of the induction motor
was measured by a similar digital tachometer (I).
The test induction motor (1) was loaded by the D.C. machine (2) which was excited at a constant ficld current from +200, 0, -200 Volt D.C. mains. Loading of the induction motor was achieved by running the D.C. machine (2) as a generator supplying the scparately excited D.C. machine (3). This D.C. machinc operated as a motor to drive the induction machine (4), as an asynchronous generator to feed power to the three-phase supply mains.

The amount of loading of the test induction motor (1) vas controlled by varying the field excitation of the D.C. machine (3). A moving coil ammeter and a moving coil voltmeter was used to measure the power output of the D.C. loading machine (2).

### 8.2.1 Variation of stator current <br> with slip for various constant <br> values of supply frequency

Tests were performed for various constant operating frequencies from 10 Hertz to 50 Hertz in steps of 10 Hertz . No measurements were taken above 50 Hertz as at the next step of 60 Hertz, the alternator set (5) and (6) tended to scream and vibrate too much and it was felt to be unsafe to operate at that frequency.

Selecting a given frequoncy, the test induction motor (1) was loaded in steps. Simultancous readings of
the three ammeters and the two wattmeters in the stator leads, as well as the ammeter and voltmeter at the armature leads of the D.C. loading machine (2) were taken. The supply frequency and the test induction motor speed was noted from the digital tachometers (2) and (1).

The stator input current was taken to be the average of the readings of the three ammeters inserted in the stator supply leads. The experimental results, together with the calculated values of stator currents from equation 5.119 are given in figure 8.3. The calculated and prodicted values agree to within $2 \%$ at the rated ( $=30 \mathrm{~A}$ ) stator current.

### 8.2.2 $\frac{\text { Elcctro-magnetic }}{\text { power output }}$

Knowing the combined windage and friction losses $P_{W+\mathbb{F}}$ of the machines (1) and (2) (Section 8.1 and Figure 8.2), and the D.C. elcctrical power output of the loading machine (2), the power output of the induction motor (1) under test was determined from

$$
\begin{equation*}
P_{20}=V_{A} I_{A}+I_{A}{ }^{2} R_{A}+4 I_{A}+P_{W+T} \tag{8.2}
\end{equation*}
$$

whore
$V_{A}$ and $I_{A}$ arc the output voltage and current of the D.C. loading machine (2).

$\mathrm{R}_{\mathrm{A}}$ is the armature resistance of the same machine.
$4 I_{A}$ is the power lost in the brush voltage drop of the same machine. This voltage drop is empirically taken as 2 Volt per brush.

The measured induction motor electro-magnetic power output under sinusoidal excitation is calculated from equation 8.2. The output is also predicted from equation 5.135 (Table 5.3) and both are shown in figure 8.4 for comparison.

### 8.2.3 Electro-magnetic <br> torque developed

The electro-magnetic torque developed by the rotor of the induction motor was determined from the rotor power output given by equation 8.2. The electro-magnetic torque in Ib .-ft.

$$
\begin{equation*}
T=\{33,000 /(2 \pi 746)\}\left(\mathrm{P}_{20} / \mathbb{N}\right) \tag{8.3}
\end{equation*}
$$

where $\mathbb{N}$ is the actual speed of the rotor in R.P.I.

A graphical plot of the electro-magnetic torque $T$ as a function of rotor percentage slip for various constant values of frequency is given in figure 8.5. The predicted torque given by equation 5.145 is also given in the same figure (Figure 8.5) for comparison. The measured and


predicted torque, as functions of rotor speed for various constant values of frequency, are given in figure 8.6. It is seen that all other conditions remaining the same, torque developed by the motor is the same for a given decrement of speed from the synchronous speed, irrespective of frequency. This is in accordance to the theoretical inference dram at the end of the section 5.8 .
8.2.4 Electrical power input

The power input $P_{1 \text { in }}$ to the induction motor was measured using two wattmeters connected at the stator input. The measured and predicted input powers (Equation 5.143) as a function of percentage slip of the rotor, for various constant values of frequency, are given in figure 8.7.

### 82.5 Total electro-magnetic loss

The total loss occurring in the induction motor was measured by taking the difference between the measured power input (Section 82.4) and the electro-magnetic power output of the rotor (Section 8.2.2). This loss is the total electro-magnetic loss occurring and does not include the windage and Iriction loss of the machine. The variation of this loss, with slip for various constant values of frequency, is shown in figure 8.8. This loss is



also predicted by summing the net rotor copper loss (Equation 5.133), iron loss (Equation 5.137) and stator copper loss (Equation 5.139). This predicted loss is also plotted in figure 8.8.

### 8.2.6 Electro-magnetic efficiency

Knowing the power input (Section 8.2.4) and the total electro-magnetic loss (Section 8.2.5), the efficiency was calculated from the usual formula

$$
\begin{equation*}
\eta_{\mathbb{M}}=(1-\text { Losses/Input)} 100 \tag{8.4}
\end{equation*}
$$

Measured and predicted values of efficiency are shown in figure 8.9.

### 8.3 Variable Frequency Load Test under Invertor Operation

To measure the performance of the invertor-fed induction motor the experimental set-up shown in figure 8.10 was used, together with the test circuit show in figure 4.3. The shunts in the stator leads showm in figure 8.10 were ommitted in figure 4.3 for clarity. These shunts, although not required for the no-load, locked rotor and load tests under variable frequency sinusoidal excitation, were in the test circuit permanently. In this way all the above-mentioned tests, including the invertor-fed motor load tests, were carried out by simple
A


FIGURE 8.10 MEASUREMENT CIRCIÚT FOR INVERTOR-FED INDUCTION MOTOR
switching. No change of circuit connections or change of leads were required, so that all the tests were carricd out under the same experimental conditions.

The harmonic analyser was used to measure the harmonic content of the supply voltage and, in conjunction with the shunts, the harmonic content of the stator line current. A simple switching scheme shown in figure 8.10 was used so that a single harmonic analyser could be conveniently used to measure the harmonic contents of both Iine to line voltage and line current. The oscilloscope monitored the wave-form of line to line voltage and line current (in conjunction with the shunts). The supply frequency was measured by feeding the voltage across the invertor commutating capacitor $\mathrm{C}_{3}$ (Figure 2.1) to a digital counter via a capacitor voltage dividing network.

### 8.3.1 Variation of stator current $\frac{\text { Vith slip for various constant }}{\text { values of supply frequency }}$

The test induction motor (1) was fed from the invertor at various constant frequencies from 10 Hertz to 50 Hertz in steps of 10 Hertz.

A certain test frequency was selected and the induction motor was gradually loaded, taking due care that the time fundamental of the supply voltage vas in accordance to the demand of the supply voltage regulation
(Figure 5.6).
The harmonic contents of stator line to line voltage are shown in figures 8.1l to 8.16. The measured and predicted (Equation 6.78) fundamental and harmonic content of stator line currents are shown in figures 8.17 to 8.21.

The wave-forms of stator line to line voltages and stator line currents were photographed and predicted (Equation 7.23) for various loading and frequencies of 50 Hertz, 40 Hertz and 10 Hertz. These are shown and compared in figures 8.22 to 8.35.

The measured and predicted peal currents of bridge thyristors and diodes are shown in figures 8.36 and 8.37.

The measured and predicted conduction angles of bridge thyristors and diodes are shown in figures 8.38 and 8.39.

The predicted values of avorage and r.m.s. values of bridge thyristors and diodes are given in figures 8.40 to 8.43 .

### 8.3.2 $\frac{\text { Electro-magnetic }}{\text { torque developed }}$

The average electro-magnetic torque was measured as in section 7.2 .3 . The average torque was predicted by harmonic analysis from equation 6.114. The instantaneous torque was predicted by time domain analysis from equation


	41				I													
砿										．	－					－		
							＋										306.	
${ }^{\circ}$	S			，			－	＋					$\square$					
W			－				4．4．											
4t																		
												等						
0.																		
$\stackrel{\square}{\circ}$							－				＋		4					
4	$\cdots$																	
												＋						
			T															
			1						－a								：	
$\frac{9}{8}$			Q 0		－	－				Na		－						
			－								2 CHz							
$\underline{5}$			10															
$\bigcirc$			A	$1$					$\mathrm{O}^{\mathrm{Hz}}$	$4$						$\frac{4}{2}$	$\mathrm{Cay}^{\mathrm{y}} \mathrm{B}$	
																5600		
．							${ }^{+}$		0.		4	－						
$\stackrel{5}{5}$		$\bigcirc$								，	－${ }^{-1}$	＋	，					
$\stackrel{4}{4}$		a								$4$		－						
											\％							
$\stackrel{5}{5}$							s0．miz．		varla	ABLE	ELEES	duen	nex	inver	Crtoe ${ }^{\text {a }}$	ESO		
f									nipu	UCTIL	$10 \times 1$	Mot	TR		TEST			
He	$\bigcirc$								Hete	¢ $\mathrm{C}^{6}$	32	W	Suriol		th Hat	ARHO	Ont	
E	E.		4									con	＋r木y	Or	STATO	OR	LINE．	
¢	．											Tot	＋	rem	AGt		$\cdots$	
$k$							$\square$											
							，											
	2												\％					
1								＋										
																	＋	
						－		2		$1 \cdot$	20	20	24		28		32	
									Epotar						$\rightarrow$ Perce			
										$\pm$							$\pm$	










VARIABLE FREQUENCY INVERTOR-FED induction motor load test FIGURE 8.21 of $13^{\text {th }}$ HARMONIC CONTENT
OF STATOR LINE CURRENT 13 Harmanic Content
Of Stator tine Current


TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOA TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$
BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOM TRACE: LINE CURRENT: SCALE $42.6 \mathrm{~A} / \mathrm{cm}$



TOP TRACE : LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$
BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$ BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$
BOTTOM TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $54 \mathrm{~V} / \mathrm{cm}$
BOTTOM TRACE: LINE CURRENT: SCALE $42.6 \mathrm{~A} / \mathrm{cm}$



TOP TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$
BOTTOM TRACE: LINE TO LINE VOLTAGE: SCALE $16.2 \mathrm{~V} / \mathrm{cm}$



TOP TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$
BOTTOM TRACE: LINE TO LINE VOLTAGE: SCALE $16.2 \mathrm{~V} / \mathrm{cm}$



TOP TRACE: LINE CURRENT: SCALE $14.2 \mathrm{~A} / \mathrm{cm}$
BOTTOM TRACE: LINE TO LINE VOLTAGE: SCALE $16.2 \mathrm{~V} / \mathrm{cm}$



TOP TRACE: LINE TO LINE VOLTAGE: SCALE $16.2 \mathrm{~V} / \mathrm{cm}$
BOTTOM TRACE: LINE CURRENT: SCALE $42.6 \mathrm{~A} / \mathrm{cm}$


VARIAQLE FREQUENCY INVERTOREFE INDUCTION MOTOR LOAD TEST
(



A



FGURE 8.42 RREDICTED BRIDGE THYRSTOR \& BRIDGE DIODE R.M.S. CURRENT

VARTABLE FREQUENCY INVERTOR-FED INDUCIION MOTOR LOAD TEST
7.27 (after due conversion from Synchronous-watt to Lij-ft.)
and shown in figure 8.44. The frequency of torque pulsation was six times that of the invertor supply. The average torque was calculated from this instantaneous torque and is shown in the same figure. Figures 8.45 and 8.46 give the predicted invertor-fed induction motor torque fluctuation as a function of average torque for various constant values of frequencies. The electromagnetic torque, as measured and predicted by the two methods, is shown in figure 8.47.

### 8.3.3 Electro-magnetic rotor power output

The electro-magnetic power output of the induction motor was measured as in section 8.2.2. This was predicted by harmonic analysis from equation 6.100 and also by time domain analysis from the following equation

$$
\begin{equation*}
P_{20}=(2 \pi 746 / 33,000) \times \mathrm{NT}_{\mathrm{AV}} \tag{8.5}
\end{equation*}
$$

where $T_{A V}$ is the average torque predicted from the time domain analysis (Section 8.3.2) and $\mathbb{N}$ is the actual rotor speed in R.P.A. The measured and predicted (by the two methods) rotor power output are shown in figure 8.48.

### 8.3.4 Electric power input

The power input to the induction motor was measured

VARIABLE FREQURNCY NVERTOR-FED UNDUCTION MOTOR LOAD TEST


EIGURE 8.44 PREDICIED INSTANTANEOUS AND AVERAGE EIBCTRO-NAGGNETIC tarqua


VARtable frequancy inverton-fid mouction motor.


FIGURE 8.47. MERAGE LLECTRO-MAGNEILC TORQUE vs ROTOR SLIP
varlable frequency inverton-fed induction motror load

as in section 8.2.4. The input power was predicted by harmonic analysis from equation 6:1ll. Knowing the instantaneous stator current from time domain analysis and the idealized line to neutral voltage wave-form, the instantaneous power input to stator was calculated. The power input was taken as the average of the instantaneous input power over a cycle. The input calculated in this way does not contain the iron loss due to the assumptions made (Section 7.1). Iron loss was separately calculated from the knowledge of the r.m.s. value of the idealized line to neutral voltage and the iron loss simulating resistance under invertor operation (Section 6.3). This iron loss was then added to the 'input power', so calculated, to determine the corrected input power(Figure8.49)

### 8.3.5 Total electro-magnetic loss

The total electro-magnetic loss of the induction motor was measured as in section 8.2.5. It was predicted by harmonic analysis from equations 6.108, 6.104 and 6.94. The r.m.s. value of stator and rotor current along $\alpha^{\prime}$ reference frame was calculated from the knowledge of instantaneous currents along that reference frame (Equations 7.22 and 7.24). These r.m.s. currents were used to calculate the stator and rotor copper loss. The iron loss was calculated as in section 8.3.4. Sumation

## Yartable rreduency ny yenorfep induction kiotor: FIGURE B. 49 STATOR NPUTHOUNER VS ROTOR SLIP



c

of these three losses is the total electro-magnetic loss as predicted by time domain analysis. The losses as measured and as predicted by the two methods are shown in figure 8.50. Figure 8.51 is given to compare the measured losses under sinusoidal excitation and under invertor operation.
8.3.6 Electro-magnetic efficiency

The electro-magnetic efficiencies were measured as in section 8.2.6. The measured end predicted efficiencies are shown in figure 8.52. The measured efficiencies under sinusoidal excitation and under invertor operation are given in figure 8.53 for comparison.

## CHAPTER 9

## GEINERAI CORCLUSIONS AITD DISCUSSIONS

This investigation was directed towards the development of design methods for impulse commutated invertors and the prediction of the behaviour of invertor-fed induction motors.

### 9.1 Applicability of the Invertor <br> Design Equations to Other <br> Types of Impulse-commutated Invertors

The invertor designed and built for this investigation Was of the single D.C. side impulse-commutated type. The principle of operation and circuit configurations of impulsecommutated invertors, in general, have been published elsewhere ${ }^{\text {l }}$.

Single D.C. side impulse-commutated invertors have high commutation efficiency and require less commutation circuit components and auxiliary supply power than other impulsecommutated invertors. This type of invertor suffers from high rates of forwerd voltage rise on the thyristors and is suitable for supplying low voltage motors.

Compared with single D.C. side invertors double D.C. side impulse-commutated invertors require, in general, two additional thyristors and more auxiliery supply power but
have lower forward voltage rise on the thyristors ${ }^{1}$. Motors of medium voltage rating can be conveniently fed from invertors of this type.

Individual D.C. side impulse-commutated invertors require, in general, the highest number of commutation circuit components ( 6 D.C. line chokes, 6 commutation thyristors and 6 D.C. line diodes). The rate of rise of forward voltage across the thyristors are well controlled ${ }^{\text {l }}$ and the D.C. line chokes receive commutating pulses once per cycle. The auxiliary supply has the lowest power rating as compared with the other two types of impulse-commutated invertors. It is preferable to use this type of invertor for supplying high power and high voltage motors.

The invertor design equations of chapter 2 were developed primarily for single D.C. side impulse-commutated invertors, but can be used, with minor modifications, for the design of double D.C. side and individual D.C. side impulse-c omutated invertors. The modification involves only the frequency of commutation. For single D.C. side impulse-commutated invertors the frequency of commutation is $3 f$, whereas for double D.C. side impulse-commutated invertors it is 6i, and for individual D.C. side impulse-commutated invertors it is I . Modification is required for the evaluation of the following four quantities:-
i) r.m.s. current of commatation thyristors (Section 2.3.7).
ii) Averaga current of commutetion thyristors (Section 2.3.8).
iii) Power rating of auxiliary commutation supply (Section 2.3.9).
iv) Commutation power supplied by the main D.C. supply (Section 2.3.10).

Those impulse-commutated invertors which do not employ a centre-tapped auxiliary supply are basically similar to invertors which employ centre-tapped main D.C. supply reservoir copacitors and a centre-tapped auxi工iary commutating supply ${ }^{\text {l }}$ (e.g. Figure 2.1). The design of the comautation circuit with this variation is best done by first evaluating the values of the comutation circuit components of an invertor of similar type with centre-tapped auxiliary supply and then changing the star-connected commutation circuit capacitors (e.g. $C_{A}, C_{B}$ and $C_{3}$ of Figure 2.1) to delta, the component values being evaluated by appropriate transformation (star/delta for single D.C. side and individual D.C. side invertors, series-parallel for double D.C. side versions).

### 9.2 Performance Prediction and Measurement of the Induction Motor when excited from Sinusoidal source

The equivalent circuit parameters, as determined from no-load and locked rotor tests (Sections 4.3 and 4.4) were used to predict the induction motor performance under variable frequency sinusoidal excitation. The greors of performance prediction are given in table 9.l.

There is a large discrepency between the measured and predicted ulectro-magnetic losses. These losses were measured by toking the difference between the stator input power and the rotor output power. The stator input powor was measured by the two-wattmeter method. The rotor electro-magnetic power was measured by summing the power output of the D.C. loading machine, the armature copper loss of the D.C. machine, and the loss due to brush are Volt-drop. This method of measuring the induction motor eloctromagnetic power output does not account for the stray load losses of the D.C. machine. As such the messured electromagnetic losses consist of the true loss and the stray load loss of the D.C. machine. The loss measurement by input/ output tests gives a result of poor accurscy. The wattmeters used to measure the stator input power had an accurecy of $=2 \frac{1}{2} \%$ for a frequency range of 0 Hertz to

Table 9.1 ERRORS $0 P$
PERFOR ATMCE PREDICTION
(HOTOR NXCITD FROM
VARTABIT SRECUENCY
SITUSOIDAI SOURCEI

Items	Check Points	Fig. No.	\% Trjor
Stator line current	$32 \%$ rotor slip and supply frequency of 10 Hertz	8.3	- 2.30
Rotor output power	12\% rotor slip and supply frequency of of 30 Hertz	8.4	$\pm 5.84$
Electro-magnetic torque	20\% rotor slip and supply frequency of 50 Hertz	8.5	$+2.97$
Stator input power	10\% rotor slip and supply frequency of 50 Hertz	8.7	$-3.36$
Blectro-magnetic loss	9.8\% rotor slip and supply frequency 50 Hertz	8.8	$-23.8$
Electro-megnetic efficiency	Torque of $22 \mathrm{Lb} .-$ ft. and supply   frequency of 50 Hertz	8.9	+6.35

$\%$ Error $=\frac{\text { Measured - Predicted }}{\text { Measured }} \times 100$

1,000 Hertz. The stray-Ioad loss of the D. C. loading machine was approximatoly $1 \%$ of the input ${ }^{20}$. जith an induction motor efficiency of $75 \%$ the accuracy of loss measurement is estimated $\mathcal{I}$ or the worst case (assuming accurate measurement of D.O. loading machine power output) to be:-

$$
\left(1.025 \mathrm{P}_{\text {in }}-0.99 \mathrm{P}_{20}\right) / \mathrm{P}_{\text {in }}
$$

or

$$
\left(1.025 \mathrm{P}_{\text {in }}-0.99 \times .75 \mathrm{P}_{\text {in }}\right) /(4 \text { loss })
$$

or

$$
\left(1.025 \mathrm{P}_{\text {in }} \times 4 \text { loss }-0.99 \times 4 \times .75 \text { loss }\right) /(4 \text { loss })
$$

or

$$
45 \% \text { higher than true loss. }
$$

The predicted electro-magnetic loss under sinusoidal excitation is $23.8 \%$ lower than that measured and hence the prediction is well within the accuracy of measurement. To investigate the losses a more sophisticated method of measurement must be used where the losses are measured directly ${ }^{21}$ and not as the difference of two large quantities.

As the intention in this project was to investigote the performance of an invertor-fed induction motor and the
development of invertor design methods, no attempt was made to investigate the lossus in detail. Toss measurement involve a multi-maciine system with swinging stators. As time was limited, it was thought that discreponcies between the theory developed in this thesis and proctical woyks feets? would provide a basis for further work.

In the electro-nagnetic loss prediction, the losses due to slot openings (discussed in Section 5.4) have not been taken into account.

### 9.3 Performence Prediction and Measurement of Invertor-fed Induction Motor

To predict the induction motor perforamee when the machine is fed from the invertor, two methods, harmonic analysis (Chapter 6) and time domain analysis (Chapter 7), have been used. The harmonic analyser used to measure the time harmonic content of stator line to line voltage and stator line current, had an accuracy of $\pm 5 \%$. The harmonic analysis utilized the measured values of harmonic content of the invertor supply whereas the time domain analysis utilized an idealized voltage wave-form. The actual harmonic contents of the invertor output voltage were in general considerably higher than that of the idealized voltage, and increased as the load on the motor increased and the time fundamental supply frequency decreased.

Table 9.2 shows the hamonic content of the actual (maximum values at selected operating conditions) and the idealized invertor voltage expressed as a percentage of the fundamental.

The worst cases of inaccuracy in the performance prediction by harmonic analysis and time domain analysis are given in table 9.3.

The harmonic currents predicted by harmonic analysis are rather inaccurate although their general variation with notor-slip agrees with that neasured. The harmonic currents on the other hand were predicted by assuming that the equivalent circuit frequency-dependent parametors were linearly dependent on frequency.

This assumption of linear variation of the parameters has no experimental justification at high harmonic froquencies. The eddy current losses which were absent when the notor was tested under sinusoidal excitation over a frequency range of 25 Hertz to 50 Hertz, may be significant at the higher harmonic frequencies. The eddy currents could produce considerable damping effects on the mutual and leakage fluxes, which has the effect of reducing the magnetizing reactance, leakage reactance and core-loss analogue resistance below those calculated from 50 Eertz values, assuming a linear dependence on frequency.

The experimental determination of the cquivalent

Table 9.2 HARMONIC CONTENT OF INVERTOR OUTPUT VOLTAGE (INVERTOR-FED INTDUCTION HOTOR LOAD TEST)

Order of time harmonics	Check Points	Fig. IVO.	Harmonic Content	
			Measured	Idealized
$5^{\text {th }}$	$8 \%$ rotor slip and supply frequency 50 Hertz	8.11	$\begin{gathered} \% \\ 31.0 \end{gathered}$	$\begin{gathered} \% \\ 20.0 \end{gathered}$
$7^{\text {th }}$	$34 \%$ rotor slip and supply frequency 10 Hertz	8.12	25.6	14.29
$11^{\text {th }}$	$8 \%$ rotor slip and supply frequency 50 Hertz	8.13	18.0	9.09
$13^{\text {th }}$	$34 \%$ rotor slip and supply frequency 10 Hertz	8.14	12.2	7.69
$17^{\text {th }}$	$8 \%$ rotor slip and supply frequency 50 Hertz	8.15	12.8	5.88
$19^{\text {th }}$	8\% rotor slip and supply frequency 10 Hertz	8.16	13.4	5.26

T 3 ble 9.3 ERRORS OF
PFRFORNAICE PRFDICTION
(INVERTOR-FED IMDUCTIOM
NTCR LOAD TEST)

Item	At	$\begin{aligned} & \text { Fig. } \\ & \text { No. } \end{aligned}$		$\begin{aligned} & \text { Time-d omain Anclysis } \\ & \left(\frac{\text { Messured-Predicted }}{\text { Measured }} \mathrm{xlon}\right) \end{aligned}$
Stator   time   funda-   mental   current	8\% rotor slip and. supply frequency of 50 Hertz	8.1'	-2.92\%	-
```5 th harmonic stator current```	8\% rotor slip and supply frequency of 50 Hertz	3.18	-40.37\%	-
$7^{\text {th }}$ harmonic stator current	8\% rotor slip and supply Srequency of 50 Hertz	8.19	-31.7%	-
$11^{\text {th }}$ harmonic stator current	18% rotor slip and supply Prequency of 20 Hertz	S. 20	-35.0\%	-

Item	At	Fíg. 180.	$\begin{gathered} \text { narmónic Analysis } \\ \left(\frac{\text { Mecisured-Predicted }}{\text { Mrasured }} \times 100\right) \end{gathered}$	Time-domain Analysis $\left(\frac{\text { Measured-Predicted }}{\text { Measured }} \times 100\right)$
13 harmonic stator current	8\% rotor slip and supply frequency Of 50 Hertz	8.21	-84.5\%	-
Peak value of stator current	2.3 Lb. -ft. torgue at 40 Hartz 8.5 Lb.-fit. torque at 10 Hertz	$\begin{aligned} & 8.36 \\ & 8.37 \end{aligned}$		$\text { S. } 6 \text { 濐 }$ -5.94%
Bridge thyristor conduction angle	$\begin{aligned} & \text { Torque }= \\ & \text { G.51 Lio.-ft. } \\ & \text { Frequency = } \\ & \text { 10 Hertz } \\ & \text { Torque }= \\ & \text { 4.2 Ib. -ft. } \\ & \text { Frequency }= \\ & 10 \text { Hertz } \end{aligned}$	$\begin{gathered} 8.38 \\ 8.38 \\ 8.35 \end{gathered}$	-	$\begin{aligned} & -6.66 \% \\ & -14.9 \% \end{aligned}$
Torque	12\% rotor slip 30 Hertz	8. 47	$+3.2 \%$	+10.6\%

Table 9.3 ERRORS OF

Item	At	$\begin{aligned} & \text { Eig. } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Harnonic Analysis } \\ \left(\frac{\text { Measured-Predicted }}{\text { Measured }} \mathrm{xl} 00\right) \end{gathered}$	$\begin{gathered} \text { Time-domain Analysis } \\ \left(\frac{\text { Measurca-Fredicted }}{\text { Measured }} \mathrm{x} 100\right) \end{gathered}$
Rotor output power	$\begin{aligned} & 18 \% \text { rotor } \\ & \text { slip } 20 \\ & \text { Hertz } \end{aligned}$	8.40	+3.8\%	+15.1\%
Stator input power	8% rotor slip at 50 Hertz	8.49	-10.2\%	-3.7\%
Electromagnetic power loss	7% rotor slip at 50 Hertz	3.50	-39.4\%	-35.2%

circuit parameters at higher harmonic frequencies involves no-load tests at high speeds, and is not feasible. Theoretical determination of these parameters from the machine design details should be considered. Correction factors (as functions of the order of time harmonic and time fundamental frequency) could be determined and used to correct the variable frequency equivalent circuit for invertor operation (Figure 6.2).

The above-mentioned reasons, together with increased slot losses at the higher harmonic frequencies, cause a large discrepancy between the measured and predicted electro-magnetic loss of the invertor-fed machine. At a time-fundamental supply frequency of 50 Hertz and a rotorslip of 7% the electro-magnetic loss, when invertor-fed, was around 40% higher than that for equivalent sinusoidal operation (Figure 8.51). Harmonic analysis (up to the $39^{\text {th }}$ in space and $19^{\text {th }}$ in time are accounted for) predicts only a 4% increment of loss under invertor operation (Figures 8.8 and 8.50). At large loads the time domain analysis gives a closer prediction of the electro-magnetic loss compared to that predicted by harmonic analysis (Figure 8.50). This inproved prediction of losses is mainly due to the increased iron loss in the equivalent circuit where the iron loss simulating resistance is
connected at the stator supply terminals. It can also be seen (Figure 8.50) that the measured "zero slip" losses and those predicted by the hamonic analysis are identical, Whereas those predicted by the time domain analysis are 16% higher compared to the measured values.

When the induction motor was invertor-fed with a time fundamental frequency of 50 Hertz , and loaded at full-load torque of 19 Lib. -ft., the efficiency was neasured to be 73.6%. Under the same loading conditions and supply frequency, but with sinusoidal excitation, the efficiency was measured to be 79.8% (Figure 8.53).

Time domain analysis predicted considerably higher electro-magnetic torque than that predicted by harmonic analysis (harmonic analysis gives the closest prediction). This is considered to be due to two reasons. Firstly, time domain analysis uses an idealized voltage wave-form whose backward rotating harmonic contents are considerably lower than those actually present. Secondly, time domain analysis assumes that the main flux path iron loss does not absorb a part of electro-magnetic power flowing across the machine air-gap.

9.4 Torque Pluctuation of Invertorfed Induction Motor

The torque fluctuation as predicted by time domain
analysis is shown in figures 8.45 and 8.46. At an average torque of $20 \mathrm{Lr} .-\mathrm{ft}$. (supply frequency 50 Hertz) the torque fluctuation is 17.5% of the average torque. The percentage torque fluctuation increases as the load torque is decreased. The not torque fluctuation remains roughly constant over a certain range of average torque, and increases at high average torques. The torque fluctuation is independent of supply time fundamental frequency except at very low frequencies.
9.5 Bridge Thyristor and Bridge Diode Conduction Angle

Trom figures 8.38 and 8.39 it is seen that the bridge thyristor and bridge diode conduction angles at zero electro-magnetic torque are almost equal ($=90^{\circ}$) and then rapidly change up to a certain value of average torque, (thyristor conduction angle increasing and that of diode decreasing), and thereafter remains constant. Variation of the supply frequency has only a minor effect on the conduction angles.
9.6 Bridge Thyristor and Bridge Diode Peak Currents

The variation of the bridge thyristor peak current (which is the current at the instant of commutation) with average electro-magnetic torque is shown in figrures 8.36
and 8.37. This peak current remains fairly constant up to a certain torque value and then increases rother rapidly with higher torques. Por the motor under test the peak current at full-lond torque of 19 Lb.-ft. was 182% of its value at zero torque. Variations of supply time fundamental frequency had only a small efiect on the peak current.

9.7 Considerations of Design for Invertor-fed Induction Motors

In the author's opinion induction motors, for use with invertors, should be so designed that the pesk current remains constent from no-load to full-load. This would considerably reduce both the capital and running cost of the invertors. Further, by this means torque pulsation would also remain at a low value over the whole operating range. It seems that there is a particular set of values for the induction motor equivalent circuit parameters which will give this optimum condition. The digital computer programe devised for time domain anolysis is now being modified to calculate the optimal values of the induction motor equivalent circuit parameters in per unit quantities. It is hoped to purblish details of this at a later date.

Since the invertor supply consists of various time harmonics, it can be postulated that these time harmonics react with some of the space harmonics of the motor air-gap flux to produce locking torques during the run-up period.

With the supply frequency adjustable the machine wos started at a very low frequency and then run-up to the desired speed by grodual increase of supply voltage and frequency. Ho locking or crawling problem was therefore encountered.

In the experimental work reported no instability problem was experienced due to the main supply reservoir capacitors and the induction motor acting as a resonant I.C. circuit. However, future work on this project might include a thorough investigation of this possibility.

9.8 Further Discussion

A recent paper ${ }^{22}$ gave a method for the prediction of instantaneous stator current and torque. The analysis is based on Park's 2-axis equations. (α^{\prime} reference freme, figures 7.7 and 7.8.) To evalucte the instantaneous current the impedance matrix is inverted and then multiplied by the impressed (instantaneous) voltage. The impressed voltages are then expressed as an infinite series of atop voltages. The instentaneous currents in each axis are determined by firstly ovaluating the response current for each individual step by a Laplace transformation technique and then summing the response current for each individual step for all the infinite number of past steps.

The paper also gives a shortened method for approximate calculations of the instantaneous stator-line
current and torque. The predicted and measured currents were compared but no measurements were recorded for instantancous torque. An active analogue circuit was also developed in this papor.

The time domain analysis carried out in chapter 7 departs considerably in the formulation and solution of the differential equations for the stator currents from the method given in the paper ${ }^{22}$ referredrearlier.

The Park's 2-axis equations given in figures 7.7 and 7.8 were transformed to equations giving hypothetical forward and backward rototing stator and rotor currents (Figure 7.13). The advanteges arising from this translation to $\boldsymbol{\alpha}$ " reference frame have been given in section 7.2.3. Having derived the equations giving stator and rotor currents along α " reference frame, the permanently shortcircuited rotor reforence axes were eliminated. The resulting impedance matrix being diagonal the admittance matrix was evaluated by inspection. The currents were then determined by a Laplace transformation technique which did not require the sumation of ini inite series (Appendix I). No attempt was made to find a shortened method for approximate calculation of the instantaneous stator-line currents and torques because of the availability of a digital computer. Time domain analysis was extended to predict the complete performance of induction motor under invertor
operation including the prediction of peak, r.m.s., average currents of bridge thyristors and bridge diodes. The conduction angles of the briage thyristors and diodes were also predicted and compared with measured values.

9.9 Further Work

The prediction of harmonic stetor-line currents and electromagnetic losses in section 9.3 were very inaccurate. A detailed investigation employing an accurate loss measurement method should be carried out.

Further analysis of the invertor-motor combination should be carried out from the D.C. input terminals of the invertor. This would take into account the effect of the D.C. line chokes and also predict the wave-form of the alternating output voltage of the invertor.

Further refincment of analysis could be directed towards making the rotor speed a function of time. Such analysis would be of use at low speeds where the assumption of constant rotor speed is not valid.

The beheviour of the induction motor at the instant of switching on to an invertor supply and also for the few cycles after switching on are also of considerable interest. The equations for these cases would develop (after pieceWise linearization for variable rotor speed) as differential equations, the "initial conditions" of the dependent
variables being determined from another set of difference equations employing the number of lapsed cycles as the independent variable. This has the advantage that the same digital computer programme could be used to determine the induction motor performance during the first few cycles after switching on, as well as the steady-state porformance This could be arranged by assigning to the variable denoting the number of cycles a small number or a very large number.

9.10 Final Summary

The invertor comutation circuit design equations and optimization described in chapter 2 has not been previously published and is considered to be original work. The design equations and the commutation circuit design curves (Figures 2.6 and 2.7) allow step-by-step design of single D.C. side impulse-commutated invertors. Application of the equations to other types of impulse-commutated invertor is outlined in section 9.1.

The time domain analysis given in chapter 7 is original although a method of determination of instantaneous line currents and torques had been previously published. The difference between the two approaches is outlined in section 9.8.

This analysis was used to enable calculation of the A.C. line currents and hence the bridge thyristor and diode
average, rom.s. and pealr current, which were required in the invertor design procedure. Time domain analysis was extended to predict the complete behaviour of the invertorfed induction motor.

It was realized that time domain analysis would have limitations in loss prediction (especially for cage-rotor motors) because it assumes that the stator and rotor are smocth, and also that the air-gap flux is sinusoidolly distributed. An idealized stator input voltage wave-iorm was used.

Harmonic analysis, in time and space, was developed. The determination of the main Ilux path iron loss (Chapter 6) under non-sinusoidal excitation is also considered to be original work. Although the effect of the form factor of the air-gap voltage on the magnitude of the main flux is given in various text books, no equations leading to the determination of the value of the iron loss analogue resistance for non-sinusoidal excitation are believed to exist. The author claims that the effect of non-sinusoidal excitation on main flux path, eddy current and hysteresis loss, discussed in sections 6.1.1 and 6.1.2 is a contribution to the knowledge of main flux path iron losses under conditions of non-sinusoical excitation. The effect of non-sinusoidol excitation on load losses due to slot openings, however, was
not investigated because of shortage of time.
The equivalent circuit (Figure 6.2) developed for harmonic analysis in time and space is an extension of a published equivalent circuit (Figure 5.4) for an induction motor excited from a voriable frequency sinusoidal source. This published equivalent circuit does not take into account the space harmonics of the machine air-gap m.m.f., which has a pronounced effect on strey load losses, especially for cage-rotor machines.

The prediction of the moin flux path iron loss based on the line voltage wre-form showed that an invertor-fed induction motor has lower main flux path iron loss, which led the author to look rather closely into the eifect of star/delta connection of the stator coils on the iron loss (Sections 6.2 and 7.8). It was shown that under nonsinusoidal excitation the iron loss must be calculated for line to neutral voltage wave-form and not for line voltage wave-form.

APPENDIX I

SOLUTION OF THE
DIT TERENTIAL EQUATION

Equation 7.48 can be rewritten as

$$
\left(p^{2}+B p+C\right) i=K v_{D}(p+D)+j K v_{Q}(p+D)
$$

or

$$
\left(p-R_{a}\right)\left(p-R_{b}\right) i=K v_{D}(p+D)+j K v_{Q}(p+D)
$$

where R_{a} and R_{b} are the roots of the quadratic $p^{2}+B p+$ $0=0$.

$$
\begin{equation*}
\therefore \quad i=\frac{K(p+D)}{\left(p-R_{a}\right)\left(p-R_{b}\right)^{v}}+j \frac{K(p+D)}{\left(p-R_{a}\right)\left(p-R_{b}\right)^{v}}{ }^{v} \tag{AI-I}
\end{equation*}
$$

The sequence currents ane therefore composed of two components, one due to the direct axis excitation only, and the other due to quadrature axis excitation only. The solution can be obtained very neatly by utilizing a Laplace transformation technique.

A.I. 1 Response Due to Direct Axis Excitation only

The direct axis exciting voltage waveform is show in figure 7.6. Denoting the instantaneous direct axis
voltage by V_{D}, the Laplace transformation of the waveform for one cycle only is

$$
V_{D O}(s)=\int_{0}^{T} v_{D}(t) e^{-s t} d t
$$

where \mathbb{T} is the period of the direct axis voltage.
If $V_{I}^{\text {RiMS }}$ INV is the romes. value of the time fundmental of the idealized inverter output voltage then the height of each step of the direct axis voltage is given by (Figure 7.6 and Appendix II)

$$
\begin{aligned}
\mathrm{K}_{\mathrm{D}} & =\text { Height of each step } \\
& =\frac{\pi}{(6)^{\frac{1}{2}} 3} I_{V} V_{1}^{\text {PIS }} \text { INV }
\end{aligned}
$$

$V_{D O}(s)$. now has the form

$$
\begin{align*}
V_{D O}(s)=K_{D} \frac{1}{s}[1 & +e^{-\frac{T}{6}}-e^{-\frac{T}{3} s}-2 e^{-\frac{T}{2} s}-e^{-\frac{2 T}{3} s} \\
& \left.+e^{-\frac{5 T}{6} s}+e^{-T s}\right] \tag{AI-2}
\end{align*}
$$

Taking periodicity into account, the Laplace transformation of the direct axis waveform $V_{D}(s)$

$$
V_{D}(s)=\frac{K_{D}}{s\left(1-e^{-I s}\right)}\left[1+e^{-\frac{T}{6^{S}}}-e^{-\frac{T}{3} s}-2 e^{-\frac{T}{2} s}\right.
$$

$$
\begin{aligned}
& \left.-e^{-\frac{2}{3} T s}+e^{-\frac{5}{6} T s}+e^{-T s}\right] \\
& =K_{D D} \frac{T_{D O}(s)}{s\left(I-e^{-s T}\right)} \\
& \quad(A I-3))
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{T}_{\mathrm{DO}}(\mathrm{~s})= & {\left[1+e^{-\frac{T}{6} s}-e^{-\frac{T}{3} s}-2 e^{-\frac{T}{2} s}-e^{-\frac{2}{3} s}+e^{-\frac{5}{6} \mathrm{~T}}\right.} \\
& \left.+e^{-T s}\right] \\
= & (A I-4) \\
& \text { of factor which relates to the wave-form } \\
& \text { one cycle only. }
\end{aligned}
$$

The component of current due to direct axis excitation only in the complex s domain is from equations $A I-1$ and $A I-3$

$$
I_{D}(s) \quad=\frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} \frac{T_{D O}(s)}{1-e^{-s T}}
$$

and in partial fractions is

$$
\begin{equation*}
I_{D}(s)=K_{D} K\left[\frac{A_{1}}{s}+\frac{B_{1}}{s-R_{a}}+\frac{C_{1}}{s-R_{b}}\right]_{1-e}^{T_{D O}(s)} \tag{AI-5}
\end{equation*}
$$

where the residues

$$
\begin{equation*}
\mathrm{A}_{1} \quad=\frac{-\mathrm{D}}{\mathrm{R}_{\mathrm{a}} \mathrm{R}_{\mathrm{b}}} \tag{AI-6}
\end{equation*}
$$

$$
\begin{align*}
B_{1} & =\frac{R_{a}-D}{R_{a}\left(R_{a}-R_{b}\right)} \tag{AI-7}\\
C_{1} & =\frac{R_{b}-D}{R_{b}\left(R_{b}-R_{a}\right)} \tag{AI-8}
\end{align*}
$$

and $\quad C_{1}$

The principal terms of the partial fraction (Equation $A I-5$) about the poles $s=R_{a}$ and $s=R_{b}$ are

$$
\begin{align*}
& A_{D}(s)_{s=R_{a}}=\frac{K_{D} K B_{I}}{s-R_{a}} \frac{T_{D G}(s)_{s=R_{a}}}{1-e^{-R_{i} a^{T}}} \tag{AI-9}\\
& A_{D}(s)_{s=R_{b}}=\frac{K_{D} K C_{1}}{s-R_{b}} \frac{T_{D O}(s)_{s=R_{b}}}{1-e^{-R_{b} T}}
\end{align*}
$$

The sum of the two principal terms is

$$
\begin{equation*}
A_{D}(s)_{s=R_{a}, R_{b}}=\frac{K_{D} \mathrm{~KB}_{1}}{s-R_{a}} K_{D 1}+\frac{K_{D} K C_{1}}{s-R_{b}} K_{D 2} \tag{AI-11}
\end{equation*}
$$

where

$$
\begin{align*}
K_{D I} & =\frac{T_{D O}(s)_{s=R_{a}}}{1-e^{-R_{a} a^{T}}} \tag{AI-12}\\
K_{D 1} \quad & =\frac{T_{D O}(s)_{S=R_{b}}^{-R_{b}^{T}}}{1-e^{T}} \tag{AI-13}
\end{align*}
$$

The component of current due to direct axis excitation for one cycle is then given by

$$
\begin{equation*}
I_{D O}(s)=H(s) V_{D O}(s)-\left(1-e^{-s T}\right) A_{D}(s)_{s=R_{a}, R_{b}} \tag{AI-14}
\end{equation*}
$$

where $H(s)$ is the component of current due to direct axis impulse dirac excitation and is from equation AI - 1 .

$$
\begin{equation*}
H(s) \quad=\frac{K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} \tag{AI-15}
\end{equation*}
$$

Substituting equation AI - 15 in equation AI - 14 we obtain

$$
\begin{aligned}
& I_{D O}(s)= \frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)}\left[1+e^{-\frac{T}{6} s}-e^{-\frac{T}{3} s}-e^{-\frac{T}{2} s}\right. \\
&\left.-e^{-\frac{2}{3} T s}+e^{\frac{5}{6} s}+e^{-T s}\right]-\frac{K_{D} K_{1}}{s-R_{a}} x \\
& K_{D 1}\left(I-e^{-s T}\right)-\frac{K_{D} K C_{1}}{s-R_{b} K_{D 2}\left(I-e^{-s T}\right)} \\
&=\frac{K_{D} T(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)-\frac{K_{D} K B_{1}}{s-R_{a}} K_{D I}-\frac{K_{D} K C_{I}}{s-R_{b}}} \\
& \times K_{D 2}+\frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} e^{-\frac{T}{6} s} \\
&-\frac{K_{D} K(s+D)}{s(s-R)(s-R)} e^{-\frac{T}{3} s} \\
&-\frac{2 K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} e^{-\frac{T}{2} s} \\
&-\frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} e^{-\frac{2}{3} T s} \\
&+\frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} e^{-\frac{5}{6} T s} \\
&+\frac{K_{D} K(s+D)}{s\left(s-R_{a}\right)\left(s-R_{b}\right)} e^{-T s}
\end{aligned}
$$

Inverting the component of current due to direct axis excitation only for one cycle into the time domain gives

$$
\begin{aligned}
& { }^{i_{D O}}(t)=K_{D} I\left[A_{1}+B_{I} e^{R_{R}} a^{t}+C_{I} e^{R_{b} t_{i}}\right]-K_{D} K B_{1} K_{D 1} e^{R_{a}^{t}} \\
& -K_{D} K_{C} K_{D 2} e^{R_{b} t}+K_{D} K\left[A_{1}\right. \\
& \left.+B_{I} e^{R_{a}\left(t-\frac{T}{6}\right)}+C_{I} e^{R_{b}\left(t-\frac{T}{6}\right)}\right] \\
& \times U\left(t-\frac{T}{6}\right)-K_{D} K\left[A_{I}+B_{1} e^{R_{a}\left(t-\frac{T}{3}\right)}\right. \\
& \left.+C_{1} e^{R_{b}\left(t-\frac{T}{3}\right)}\right] U\left(t-\frac{T}{3}\right)-2 K_{D} K\left[A_{1}\right. \\
& \left.+B_{1} e^{R_{a}\left(t-\frac{T}{2}\right)}+C_{1} e^{R_{b}\left(t-\frac{T}{2}\right)}\right] \\
& \times U\left(t-\frac{T}{2}\right)-K_{D} K\left[A_{1}+B_{1} e^{R_{a}\left(t-\frac{2}{3} T\right)}\right. \\
& \left.+C_{1} e^{R_{b}\left(t-\frac{2}{3} T\right)}\right] U\left(t-\frac{2_{T}}{3}\right)+K_{D} K\left[A_{I}\right. \\
& \left.+B_{1} e^{R} a^{\left(t-\frac{5}{6} T\right)}+C_{1} e^{R_{b}\left(t-\frac{5}{6} T\right)}\right] \\
& U\left(t-\frac{5}{6} T\right)+K_{D} K\left[A_{I}+B_{I} e^{R_{a}(t-T)}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+C_{I} e^{R_{b}(t-T)}\right] U(t-T)+K_{D} K\left[K_{D I}\right. \\
& \left.B_{I} e^{R_{a}(t-T)}+K_{D 2} C_{I} e^{R_{b}(t-T)}\right] \\
& \times U(t-T) \quad\left(A I-I^{\prime}\right. \tag{AI-17}
\end{align*}
$$

One cycle current response due to direct axis excitation only is

$$
\begin{aligned}
& 0 \leqslant t \leqslant \frac{T}{6}: \quad K_{D} K\left[A_{1}+B_{1} e^{R_{a}^{t}}+C_{1} e^{R_{b} H^{i}}-B_{1} K_{D I} e^{R_{a} t^{\prime}}\right. \\
& \left.-C_{1} K_{D 2} e^{R_{b} t}\right] \\
& \frac{T}{6} \leqslant t \leqslant \frac{T}{3}: K_{D} K\left[2 A_{I}+B_{I} e^{R_{a} t}\left(I+e^{-\frac{T}{6} R_{a}}\right)+C_{I} e^{R_{b} t}\right. \\
& \left.x\left(1+e^{-\frac{T}{6} R_{b}}\right)-B_{1} K_{D 1} e^{R_{D} a^{t}}-C_{1} K_{D 2} e^{R_{b} \frac{1}{2}}\right] \\
& \frac{T}{3} \leqslant t \leqslant \frac{T}{2}: \quad K_{D} K\left[\Lambda_{1}+B_{1} e^{R_{a}}\left(1+e^{-\frac{T}{b} R} a-e^{-\frac{T}{3} R} a\right)\right. \\
& +C_{I} e^{R_{b} t}\left(I+e^{-\frac{T}{6} R_{b}}-e^{-\frac{T}{3} R_{b}}\right) \\
& \left.-B_{1} K_{D 1} e^{R_{a}-t}-C_{1} K_{D 2} e^{R_{b} t}\right] \\
& \frac{T}{2} \leqslant t \leqslant \frac{2}{3} T: K_{D} K\left[-A_{1}+B_{1} e^{R a}\left(1+e^{-\frac{T}{6} R} a-e^{-\frac{T}{3} R} a\right.\right. \\
& \left.-2 e^{-\frac{T}{2} R} a\right)+C_{I} e^{R_{b}{ }^{R}}\left(I+e^{-\frac{T}{6} R_{b}}\right. \\
& \left.-e^{-\frac{T}{3} R_{b}}-2 e^{-\frac{T}{2} R_{b}}\right)-B_{I} K_{D I} e^{R_{a} a_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-C_{1} K_{D 2} e^{R_{b}}\right] \\
& \frac{2}{3} T \leqslant t \leqslant \frac{5}{6} T: K_{D} K\left[-2 A_{1}+B_{1} e^{R_{a}}\left(1+e^{-\frac{T}{6} R} a-e^{-\frac{T}{3} R} a\right.\right. \\
& \left.-2 e^{-\frac{T}{2} R} a-e^{-\frac{2}{3} T R} a\right)+C_{1} e^{R_{b}}(1+ \\
& -e^{-\frac{T}{6} R_{b}}-e^{-\frac{T}{3} R_{b}}-2 e^{-\frac{T}{2} R_{b}}-e^{-\frac{2}{3} T R_{b}} \\
& \left.-B_{1} K_{D 1} e^{R_{a}^{t}}-C_{1} K_{D 2} e^{R_{b} b^{t}}\right] \\
& \frac{5}{6} T \leqslant t \leqslant T: K_{D} K\left[-A_{1}+B_{1} e^{R_{a}^{t}}\left(1+e^{-\frac{T}{6} R} a-e^{-\frac{T}{3} R} a\right.\right. \\
& -2 e^{-\frac{T}{2} R_{a}}-e^{-\frac{2}{3} T R_{a}}+e^{-\frac{5}{6} T R_{a}} \\
& +C_{1} e^{R_{b} t}\left(1+e^{-\frac{T}{6} R_{b}}-e^{-\frac{T}{3} R_{b}}-2 e^{-\frac{T}{2} R_{b}}\right. \\
& \left.-e^{-\frac{2}{3} T R_{b}}+e^{-\frac{5}{6} T R_{b}}\right)-B_{1} K_{D 1} e^{R_{a}^{t}} \\
& \left.-C_{1} K_{D 2} e^{R_{b}{ }^{*}}\right] \\
& T \leqslant t \leqslant \infty: K_{D} K\left[B _ { 1 } e ^ { R a ^ { t } } \left(1+e^{-\frac{T}{6} R} a-e^{-\frac{T}{3} R} a-2 e^{-\frac{T}{2} R} a\right.\right. \\
& \left.-e^{-\frac{2}{3} T R_{a}}+e^{-\frac{5}{6} T R_{a}}+e^{-T R_{a}}\right)+C_{1} e^{R_{b} t} \\
& \left(1+e^{-\frac{T}{6} R_{b}}-e^{-\frac{T}{3} R_{b}}-2 e^{-\frac{T}{2} R_{b}}-e^{-\frac{2}{3} T R_{b}}\right. \\
& \left.+\mathrm{e}^{-\frac{5}{6} T R_{b}}+\mathrm{e}^{-T R_{b}}\right)-B_{I} K_{D I} e^{R a^{t}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times\left(I-e^{-R_{a}^{T}}\right)-C_{1} K_{D 2} e^{R_{b} t}\left(I-e^{-R_{b}^{T}}\right)\right] \\
& =K_{D} K\left[B_{I} e^{R_{a}^{t}}\left(I-e^{-T R_{a}}\right) K_{D 1}+C_{1} e^{R_{b} t}\left(I-e^{T R_{b}}\right)\right. \\
& \times K_{D 2}-B_{1} K_{D 1} e^{R_{a}^{t}}\left(I-e^{-R_{a}^{T}}\right) \\
& -C_{1} K_{D 2} e^{R_{b}^{t}}\left(I-e^{-R_{b} T}\right) \\
& =0
\end{aligned}
$$

This demonstrates the validity of the expressions.
A.I. 2 Current Response Due to

Quadrature Axis Excitation only

Following the procedure given in section A.I.l the current response due to quadrature axis excitation only, for one cycle is

$$
\begin{aligned}
& 0 \leqslant t \leqslant \frac{T}{6}: K_{Q} K {\left[-\left\{B_{1} K_{Q 1} e^{R_{a}^{t}}+C_{1} K_{Q 2} e^{R_{L} t}+A_{1}\right.\right.} \\
&\left.\left.+B_{1} e^{R_{a} a^{t}}+C_{1} e^{R_{b} t}\right\}\right] \\
& \begin{aligned}
\frac{T}{6} \leqslant t \leqslant \frac{T}{3}: K_{Q} K & {\left[-B_{1} K_{Q 1} e^{R_{a}^{t}}-C_{1} K_{Q 2} e^{R_{b} t}+B_{1} e^{R_{2} a^{t}}(-1\right.} \\
& \left.\left.+e^{\frac{T}{6} R^{2}}\right)+C_{1} e^{R_{b} t}\left(-1+e^{-\frac{T}{6} R_{b}}\right)\right]
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{T}{3} \leqslant t \leqslant \frac{T}{2}: K_{0} T & {\left[-B_{1} K_{Q 1} e^{R_{a} t}-C_{1} R_{02} e^{R_{b} t}+A_{1}\right.} \\
& +B_{1} e^{R_{a}}\left(-1+e^{-\frac{T}{6} R_{a}}-e^{-\frac{T}{3}} a\right) \\
& -C_{1} e^{R_{b} t}\left(-1-e^{-\frac{T}{6} R_{b}}-e^{-\frac{T}{3} R_{b}}\right)
\end{aligned}
$$

$$
\frac{T}{2} \leqslant t \leqslant \frac{2}{3} T: \text { Same as above. }\left(\frac{T}{3} \leqslant t \leqslant \frac{T}{2}\right)
$$

$$
\frac{2}{3} \pi \leqslant t \leqslant \frac{5}{6} T: K_{0} K\left[-B_{1} K_{Q 1} e^{R_{a} t}-C_{1} K_{02} e^{R_{b} t}+B_{1} e^{R_{a} t}(-1\right.
$$

$$
+e^{-\frac{T}{6} R} R^{-}+e^{-\frac{T}{3} R} a-e^{-\frac{2}{3} T R_{a}}
$$

$$
-C_{1} e^{R_{b} t}\left(-1+e^{-\frac{T}{6} R_{b}}+e^{-\frac{T}{3} R_{b}}\right.
$$

$$
\left.-e^{-\frac{2}{3} T R_{b}}\right]
$$

$$
\frac{5}{6} T \leqslant t \leqslant T: \quad K_{Q} K\left[-B_{1} K_{Q 1} e^{R_{a} t}-C_{1} K_{Q 2} e^{R_{b} t}-A_{1} t\right.
$$

$$
+B_{1} e^{R_{a} t}\left(-1+e^{-\frac{T}{6} R_{a}}+e^{-\frac{T}{3} R_{a}}\right.
$$

$$
-e^{-\frac{2}{3} T R_{a}}-e^{-\frac{5}{6} T R_{a}}+C_{1} e^{R_{b} t}(-1
$$

$$
\left.\left.+e^{-\frac{T}{6} R_{b}}+e^{-\frac{T}{3} R_{b}}-e^{-\frac{2}{3} T R_{b}}-e^{-\frac{5}{6} T R_{b}}\right)\right]
$$

$$
\begin{aligned}
T \leqslant t \leqslant \infty: & K_{Q} K\left[-B_{1} K_{Q 1} e^{R_{a} t}\left(1-e^{R_{a} T}\right)-C_{1} K_{02} e^{R_{b} t}\right. \\
& \times\left(1-e^{-R_{b} T}\right)+B_{1} K_{Q 1} e^{R_{a}^{t}}\left(1-e^{-R_{a} T}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.-C_{1} K_{Q 2} e^{R_{k} t}!1-e^{R_{b} T}\right) \\
& =0
\end{aligned}
$$

This checks the validity of the equations.
(AI - 19)

Where A_{1}, B_{1} and C_{1} are given by equations $A I-6, A I-7$ and AT - 8

$$
\begin{aligned}
& K_{Q} \quad=\text { Height of quadrature axis voltage step. } \\
& =\frac{1}{3(2)^{\frac{1}{2}}} \mathrm{I}_{1} \mathrm{RINS} \\
& \text { (AI - 20) } \\
& T_{80}(s)=\left[-1+e^{-\frac{T}{6} s}+e^{-\frac{T}{3} s}-e^{-\frac{2}{3} T s}-e^{-\frac{5}{6} T s}+e^{-T s}\right] \\
& \text { (} A I-2 I \text {) } \\
& \mathrm{K}_{\mathrm{OL}}=\frac{\mathrm{T}_{\mathrm{QO}}(\mathrm{~s})_{\mathrm{s}=\mathrm{R}_{a}}}{1-\mathrm{e}_{\mathrm{a}}} \\
& K_{02}=\frac{T_{Q 0}(s)_{s=R_{b}}}{1-e^{-R_{b} T}} \\
& \text { (AI - 22) } \\
& \text { (AI - 23) }
\end{aligned}
$$

APPENDIX II

$\frac{\text { HARMONIC ANALYSIS }}{\text { ONVERTOR IDEALISED }}$
A.II.l Harmonic Analysis of Line to Line Voltage

The idealised line to line output voltage with axes axes selected for output voltage is shown in figure 7.5.

The output voltage expressed as a function of angle θ is given by

$$
\begin{array}{rlrl}
f(\theta) & =0 & 0 \leqslant \theta \frac{\pi}{6} \\
& =I_{\hat{V}_{\text {INV }}} & & \frac{\pi}{6} \leqslant \theta \leqslant \frac{5 \pi}{6} \\
& =0 & & \frac{5 \pi}{6} \leqslant \theta \leqslant \pi
\end{array}
$$

The function so described is an odd function and in accordance with Fourier series

$$
f(\theta)=\sum_{\bar{\delta}} \gamma \sin \gamma \theta d \theta
$$

where the amplitude $b \gamma$ of the $\gamma^{\text {th }}$ harmonic is given by

$$
\begin{aligned}
{ }^{\mathrm{b}} \gamma & =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin \gamma \theta d \theta \\
& \left.=-\frac{2}{\pi}\left({ }^{\bar{T}} \hat{v}_{\text {INV }}\right) \frac{\cos \gamma \theta}{\gamma} \right\rvert\, \frac{\frac{5 \pi}{6}}{\frac{\pi}{6}}
\end{aligned}
$$

$$
=\frac{2}{\pi} \frac{\mathrm{I}_{\mathrm{V}}^{\hat{\Lambda}}}{}\left[\cos \gamma \frac{\pi}{6}-\cos \gamma \frac{5 \pi}{6}\right]
$$

Now

$$
\cos \gamma \frac{\pi}{6}=\cos \gamma \frac{5 \pi}{6} \text { for even values of } \gamma
$$

and

$$
\begin{aligned}
\cos \gamma \frac{\pi}{6} & =\cos \frac{5 \pi}{6} \\
& =0 \text { for triplen values of } \gamma
\end{aligned}
$$

Further

$$
\begin{array}{r}
\cos \gamma \frac{\pi}{6}-\cos \gamma \frac{5 \pi}{6}=(3)^{\frac{1}{2}} \text { for all values of } \\
\gamma=(6 \mathrm{~K} \pm 1)
\end{array}
$$

where $K=0,1,2,3 \ldots$ any positive integer.

Therefore the idealised output line to line voltage of the invertor consists time harmonics of the order $\gamma=$ ($6 \mathrm{~K} \pm 1$) and devoid of any even and triple harmonics. The amplitude of the fundamental
$\mathrm{b}_{\mathrm{I}}=\frac{2(3)^{\frac{1}{2}}}{\pi} \mathrm{I}_{\mathrm{VINV}}$
The amplitude of the $y^{\text {th }}$ harmonic
$b_{\sigma}=\frac{2(3)^{\frac{1}{2}}}{\pi} \frac{\mathrm{I}_{\mathrm{V}_{\text {INV }}}}{\gamma}$
A.II.2. Harmonic Analysis of

Line to Nexteal Voltage
Figure 7.5 shows the idealised line to neutral voltage with axes selected for harmonic analysis.

Over a half cycle, the voltage expressed as a function of angle θ

$$
\begin{aligned}
f(\theta) & =\frac{1}{3} I_{V_{I N V}}^{n} \quad 0 \leqslant \theta \quad \frac{\pi}{3} \\
& =\frac{2}{3} I_{\hat{V}_{\text {INV }}} \quad \frac{\pi}{3} \leqslant \theta \leqslant \frac{2 \pi}{3} \\
& =\frac{1}{3} I_{\hat{V}_{\text {INV }}} \quad \frac{2 \bar{n}}{3} \leqslant \theta \leqslant \pi
\end{aligned}
$$

Since the function is odd it can be written as a Fourier series

$$
f(\theta)=\sum_{\partial=1} \mathrm{~b} \gamma^{\sin \gamma \theta d \theta}
$$

where the amplitude ${ }^{b} \gamma$ of the $\gamma^{\text {th }}$ time harmonic is given by

$$
\begin{aligned}
b_{x}= & \frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin \gamma \theta d \theta \\
= & \frac{2}{\pi} \frac{L_{V}^{n}}{3} \int_{0}^{\pi}\left[\int_{0}^{\frac{\pi}{3}} \sin \gamma \theta d \theta+2 \int_{\pi / 3}^{\frac{2 \pi}{3}} \sin \gamma \theta d \theta\right. \\
& \left.+\int_{\frac{2 \pi}{3}}^{\pi} \sin \gamma \theta d \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{\pi} \frac{\mathrm{I}_{\hat{V}_{\text {INV }}}}{3}\left[-\left.\frac{\cos \gamma \theta}{\gamma}\right|_{0} ^{\frac{\pi}{3}}-\left.2 \frac{\cos \gamma \theta}{\gamma}\right|_{\frac{\pi}{3}} ^{2 \pi / 3}\right. \\
& \left.-\frac{\cos \gamma_{\theta}}{\gamma} \left\lvert\, \begin{array}{c}
\pi \\
\frac{2 \pi}{3}
\end{array}\right.\right] \\
& =\frac{2}{\pi} \frac{{ }^{L^{\hat{V}}}}{\text { INV }} \text { }\left[-\cos \frac{\gamma \pi}{3}+2 \cos \frac{\gamma \pi}{3}-2 \cos \frac{2 \pi}{3} \gamma\right. \\
& \left.+\cos \gamma \frac{2 \pi}{3}-\cos \gamma \pi\right] \\
& =\frac{2}{\pi} \frac{I_{\hat{V}_{\text {INV }}}}{3 \gamma}\left[1+\cos \gamma \frac{\pi}{3}-\cos \gamma \frac{2 \pi}{3}-\cos \gamma \pi\right]
\end{aligned}
$$

The term

$$
\begin{aligned}
& {\left[\begin{array}{rl}
{\left[1+\cos \frac{\gamma \pi}{3}-\cos \gamma \frac{2 \pi}{3}-\cos \gamma \pi\right]=} & 0 \text { for all triple } \\
& \text { values of } \gamma
\end{array}\right.} \\
& =\text { ? for all even } \\
& \text { values of } \gamma \\
& =3 \text { for } \gamma=(6 \mathrm{~K}-1)
\end{aligned}
$$

where $K=0,1,2,3$, etc.

Therefore

$$
\mathrm{b}_{\gamma}=\frac{2}{\pi \gamma} I_{V_{\text {INV }}} \text { for }=\gamma(6 \mathrm{~K} \pm I)
$$

$$
=0 \text { for } \neq(6 \mathrm{~K} \pm I)
$$

The amplitude of the fundamental component

$$
\mathrm{b}_{I}=\frac{2}{\pi} \mathrm{I}_{\hat{V}_{\mathrm{INV}}}
$$

A.II. 3 R.M.S. Value of the Idealised fine to line Voltage in terms of its Step-height

Referring to figure 7.5 , the r.m.s. value of the idealised line to line invertor output voltage

$$
\begin{aligned}
I_{V}^{\text {RIMS }} & =\left[\frac{I}{2 \pi}\left\{\left(I_{I N V} \hat{V}_{I N V}\right)^{2} \frac{2 \pi}{3}+\left(I_{\hat{V}_{I N V}}\right)^{2} \frac{2 \pi}{3}\right\}\right]^{1 / 2} \\
& =\left(\frac{2}{3} I_{V_{I N V}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. II. } 4 \frac{\text { R.M.S. Value of the Idealised }}{\text { Line to Line Voltage in terms }} \\
& \frac{\text { Of the R.M.S. Value of its }}{\text { Time Fundamental }}
\end{aligned}
$$

From section A.II.l the amplitude of the time fundamental $=$ $\frac{2(3)^{\frac{1}{2}}}{\pi} I_{\hat{V}_{\text {INV }}}$
\therefore R.M.S. value of the time fundamental $I_{V I M S} V_{I M}=\frac{(6)^{\frac{1}{3}}}{\pi} I_{V_{\text {INV }}}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{V}_{\text {INV }}}^{\wedge}=\frac{\pi}{(6)^{\frac{1}{2}}} \mathrm{I}_{\mathrm{V}} \mathrm{RMIS} \\
& \mathrm{I}_{\mathrm{V}_{\text {INV }}^{\text {PIS }}}=\frac{\pi}{3} \mathrm{I}_{\mathrm{V}_{1} \mathrm{RMS}}^{\text {INV }}
\end{aligned}
$$

A. II. 5 Average Value of the
Idealised Invertor Line
to Line Voltage in terms
of its Step-height

Referring to figure 7.5,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{V}}^{\mathrm{IV}} & =\frac{I}{\bar{\pi}}\left\{\mathrm{I}_{\mathrm{V}_{\text {INV }}} \frac{2 \pi}{3}\right\} \\
& =\frac{2}{3} \mathrm{I}_{\mathrm{V}_{\text {INV }}}
\end{aligned}
$$

A.II. 6 Form-factor of Idealised

Invertor Line to Line Voltage
Form-factor $\mathrm{I}_{\mathrm{K}_{f} \text { INV }}=\frac{\mathrm{I}_{\mathrm{V}_{\text {INV }} \mathrm{RNS}}}{\mathrm{I}_{\mathrm{V}_{\text {INV }}^{A V}}}$
$=\frac{(2)^{\frac{1}{2}}}{(3)^{\frac{1}{2}}} \tilde{V}_{I N V} \frac{3}{2} \frac{I}{I_{\hat{V}_{I N V}}}$
$=(1.5)^{\frac{1}{2}}=1.225$
A. II. 7 R.M.S. Value of Inverter

Idealised wine to Neutral
Voltage in terms of Idealised
Line to Line Voltage Step

Referring to figure 7.5, the r.m.s. value

$$
\begin{aligned}
P_{V_{\text {INV }}}= & {\left[\frac{1}{\pi}\left(\frac{1}{3} I_{\hat{V}_{I N V}}\right)^{2} \frac{\pi}{3}+\left(\frac{2}{3} I_{\hat{V}_{\text {INV }}}\right)^{2} \frac{\pi}{3}\right.} \\
& \left.\left.\quad+\frac{1}{3}\left(I_{\hat{V}_{\text {INV }}}\right) \frac{\pi}{3}\right\}\right]^{\frac{1}{2}} \\
= & I_{\hat{V}_{\text {INV }}}\left(\frac{1}{3 \times 9}+\frac{4}{3 \times 9}+\frac{1}{3 \times 9}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
=\frac{\mathrm{I}_{\mathrm{T}}}{(3)^{\frac{1}{2}}}(6 / 9)^{\frac{1}{2}}=\frac{(2)^{\frac{1}{2}}}{3} \mathrm{I}_{\mathrm{V}}
$$

$\begin{aligned} & \text { A.II. } 8 \frac{\text { R.M.S. Value of Invertor }}{\text { Idealised Line to Neutral }} \\ & \begin{aligned} \text { Voltage in terms of its } \\ \text { Time fundamental R.M.S. }\end{aligned} \\ & \text { Value }\end{aligned}$
From section A.II.2, the amplitude of the time fundmental of idealised line to neutral voltage $=\frac{2}{\pi}{ }^{\mathrm{L}} \mathrm{V}_{\text {INV }}$. The r.m.s. value ot the time fundamental is then

$$
P_{V}{ }_{I \text { INS V }}=\frac{(2)^{\frac{1}{2}}}{\pi} \operatorname{IA}_{\text {INV }}
$$

$\therefore{ }^{I} \hat{V}_{\text {INV }}=\frac{\pi}{(2)^{\frac{T}{2}}} P_{V}$ RIMS
From section A.II.7,

$$
\mathrm{P}_{\mathrm{V}}^{\mathrm{RNIS}}=\frac{\pi}{3} P_{V_{1}^{\mathrm{RMSS}}}=
$$

$$
\begin{aligned}
\text { A. II. } 9 & \frac{\text { Average Value of Invertor }}{\text { Idealised Line to Neutral }} \\
& \frac{\text { Voltage in terms of Idealised }}{\text { Line to Line Voltage Step }}
\end{aligned}
$$

Referring to figure 7.5, the average value

$$
\begin{aligned}
& P_{V} A V \\
& \text { INV } \frac{1}{\pi}\left[\left\{\left(\frac{1}{3}\right)\left({ }^{I} \hat{V}_{\text {INV }}\right)\right\} \frac{\pi}{3}+\left\{\left(\frac{2}{3}\right)\left({ }^{I} \hat{V_{I N V}}\right)\right\} \frac{\pi}{3}+\left\{\left(\frac{1}{3}\right)\right.\right. \\
&\left.\left.\left({ }^{I} \hat{V}_{\text {INV }}\right)\right\} \frac{\pi}{3}\right] \\
&= I_{V_{I N V}}\left\{\frac{1}{9}+\frac{2}{9}+\frac{1}{9}\right\}=\frac{4}{9} I_{\hat{V}_{\text {INV }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AlI. } 10 \text { Form-factor of Idealised } \\
& \text { Investor Line to Neutral } \\
& \text { Output Voltage } \\
& \text { Form-factor } P_{K_{f} \text { INV }}=\frac{P_{V_{\text {INV }} \text { RINd }}}{P_{V_{\text {INV }}^{A V}}} \\
& =\frac{(2)^{\frac{1}{2}}}{3} I_{\hat{V}_{\text {INV }}} \frac{9}{4} \frac{1}{I_{V_{\text {INV }}}} \\
& =\frac{3}{2(2)^{\frac{1}{2}}}=1.061
\end{aligned}
$$

1. BRADIEY, D.A.; CLARK, C.D.; DAVIS, R.I.; JONES, D.A.: 'Adjustable-frequency invertors and their application to variable speed drives', Proc. I.E.E., 1964, Ill, (11), p. 1833.
2. G.E.: 'Thyristor Manual' (a book), 1964.
3. WEST INGHOUSE: 'Thyristor Manual' (a book), 1964.
4. GUTZGILIER, I.W.; SYLVAN, T.P.: 'Power semiconductor ratings under transient and intermittent loads', A.I.E.E., 1961, January.
5. HAUGE, B: 'Mathematical treatment of the m.m.f. of the armature winding', J.I.E.E., 1917, 55, 489.
6. GRAFAM, Q: 'M.M.F. of poly-phase winding', J.I.E.E., 1927, 46, 19.
7. ALGER, P.I. 'Nature of poly-phase induction motor', (a book), Wiley, 1951.
8. AGARWAL, P.D.; ALGER, P.I.: 'Saturation factors for leakage reactance of induction motors', Trans. A.I.E.E., 1961, 80, p. 1037.
9. POSTONIKOV, N.W.: 'Stray torques and Iosses from higher harmonics of armature reaction in squirrelcage induction motors', Elektrichestvo, 1963, No. 7, p. 39 .
10. IIWSCHITZ-GARIK, M: 'Electrical Machinery', Vol. II, (a book), Van Nostrand, 1961.
11. RICHTER, R: 'Elektrische Maschinen', Vol. IV, Verlag Birkhauser, 1954.
 Iondon, 1966, July.
12. WEBER, C.A.M.; IEE, F.T.: 'Harmonics due to slot openings', J.A.I.E.E.g 1924, 43, p. 687.
13. APAROFF, B.P.: 'Influence of the slot harmonics on the torque-speed curve of the induction motor', Publ. National Research Institute (Moscow), 1924, 1: 47.
14. HO, H.: Induction motor operation under variation of supply frequency', International Journal of Electrical Engineering Education, Vol. I, 1963-64, p. 375.
15. KRON: 'Tensor Analysis', (a book), Dover, 1959.
16. ADKINS, B.: 'Generalized machine theory'; (a book), Chapman and Hall, 1957.
17. JEVONS, M.: 'Electrical machine theory', (a book), Blackie, 1966.
18. LATTHWAITE, E.R.: 'Differences between series and parallel connection in machines with asymetric magnetic cirouits', Proc. I.E.E., 1965, Il2, (11), p. 2074.
19. KOSTENTKO, M.; PIOTROVSKY, I.: 'Electrical Machines', Vols. I and II, (a book), Foreign Languages Publishing House, Moscow.
20. CHRISTOFIDES, $\mathbb{I} . ;$ ADKINS, B 。: 'Determination of load losses and torques in squirrel-cage induction motors', Proc. I.E.E., 1966, 113, (12), p. 1995.
21. WARD, E.E.; KAZI, F.I.T.E.; FARKAS, R.: 'Timedomain analysis of the invertor-fed induction motor', Proc. I.E.E., 1967, 114, (3), p. 361.
